
Image Processing
COS 426, Fall 2022

What is a Digital Image?
• A digital image is a discrete array of samples

representing a continuous 2D function

Continuous function Discrete samples

Limitations on Digital Images
• Spatial discretization
• Quantized intensity

• Approximate color (RGB)
• (Temporally discretized frames for digital video)

Image Processing
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

Similar to Analog / Continuous
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

Account for Limitations of Digital
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

New Operations
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

• Quantization
• Spatial / intensity tradeoff
! Dithering

Digital Image Processing
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

• Quantization
• Spatial / intensity tradeoff
! Dithering

Adjusting Brightness
• What must be done to the RGB values

to make this image brighter?

Lu
m

in
an

ce

x

Adjusting Brightness
• Simply scale pixel components
! Must clamp to range, e.g. [0..1] or [0..255]

Original Brighter

Note: this is often “contrast” on your monitor!
“Brightness” adjusts black level (offset)

Adjusting Contrast
• Intuitively, “mid-tone” pixels should stay the same, dark ones get

darker, light ones get lighter

• Preserve average luminance

Original More Contrast

What is Luminance?
• Measures perceived “gray-level” of pixel
! L = 0.30*red + 0.59*green + 0.11*blue

0.5
0.0

0.9

0.7

Adjusting Contrast
• Compute mean luminance L for all pixels
! luminance = 0.30*r + 0.59*g + 0.11*b

• Scale deviation from L for each pixel component
! Must clamp to range (e.g., 0 to 1)

Original More Contrast

L

Adjusting Gamma
• Function originally accounting for nonlinearity in

cameras and displays

• g depends on camera and monitor

Iout = Iing

Amount of light expected

C
or

re
ct

ed
 V

al
ue

Histogram Equalization
• Change distribution of luminance values to cover full range [0-1]

Luminance

Pi

xe
ls

Luminance

Pi
xe

ls

http://en.wikipedia.org/wiki/Histogram_equalization

Grayscale
• Convert from color to gray-levels

Compute luminance L, set every pixel to (L,L,L)

Grayscale
(“black&white” photo)

Original

Adjusting Saturation
• Increase/decrease color saturation of every pixel

Interpolate / extrapolate between image and grayscale
version

White Balance
• Adjust colors so that a given RGB value is mapped to white

White Balance
• Conceptually:
! Provide an RGB value W that should be mapped to white
! Perform transformation of color space

W

White Balance
Von Kries method: adjust colors in LMS color space

§ LMS primaries represent the responses of
the three different types of cones in our eyes

White Balance
For each pixel RGB:

1) Convert to XYZ color space

2) Convert to LMS color space

3) Divide by LWMWSW
4) Convert back to RGB

Color Histogram Transfer
• Adjust colors so that their distribution (histogram) matches

a target distribution

Source image Target colors Result Target colors Result

Fancier version of this idea from “AutoStyle: Automatic Style Transfer
from Image Collections to Users' Images” by Princeton student Yiming

Liu et al.

Digital Image Processing
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

• Quantization
• Spatial / intensity tradeoff
! Dithering

Blur
• What is the basic operation for each pixel when blurring an image?

Basic Operation: Convolution
• Output is weighted sum of values in neighborhood of input image
! Pattern of weights is the “filter” or “kernel”

Input Output

Box Filter Triangle Filter Gaussian Filter

unrelated
pixels

unrelated
pixels

uncertain
pixels

uncertain
pixels

related
pixels

Convolution with a Gaussian Filter

pixel
position

Convolution with a Gaussian Filter

Input Output

Filter

• Output is weighted sum of values in neighborhood of input image

Convolution with a Gaussian Filter

Input Output

Filter

• Output is weighted sum of values in neighborhood of input image

Convolution with a Gaussian Filter

Input Output

Filter

• Output is weighted sum of values in neighborhood of input image

Convolution with a Gaussian Filter

Input Output

Filter

• Output is weighted sum of values in neighborhood of input image

Convolution with a Gaussian Filter

Input Output

Filter

• Output is weighted sum of values in neighborhood of input image

Convolution with a Gaussian Filter

Input Output

Filter

• What if filter extends beyond boundary?

Convolution with a Gaussian Filter

Input Output

Modified Filter

• What if filter extends beyond boundary?

Convolution with a Gaussian Filter

Figure 2.4 Wolberg

Input Output

Filter

• Output contains samples from smoothed input

Linear Filtering
• 2D Convolution
! Each output pixel is a linear combination of input pixels in 2D neighborhood

with weights prescribed by a filter

Input Image

Filter

Output Image

Linear Filtering
• 2D Convolution
! Each output pixel is a linear combination of input pixels in 2D neighborhood

with weights prescribed by a filter

Input Image

Filter

Output Image

Linear Filtering
• 2D Convolution
! Each output pixel is a linear combination of input pixels in 2D neighborhood

with weights prescribed by a filter

Input Image

Filter

Output Image

Linear Filtering
• 2D Convolution
! Each output pixel is a linear combination of input pixels in 2D neighborhood

with weights prescribed by a filter

Input Image

Filter

Output Image

Linear Filtering
• 2D Convolution
! Each output pixel is a linear combination of input pixels in 2D neighborhood

with weights prescribed by a filter

Input Image

Filter

Output Image

Gaussian Blur

input

per-pixel multiplication

output
*

normalized
Gaussian function

Gaussian Blur
• Output value is weighted sum of values in neighborhood of input

image

0

1

input

Gaussian blur

Linear Filtering
• Many interesting linear filters
! Blur
! Edge detect
! Sharpen
! Emboss
! etc.

Filter = ?

Edge Detection
• Convolve with a 2D Laplacian filter that finds

differences between neighbor pixels

Original Detect edges

Filter =

Sharpen
• Sum detected edges with original image

Original Sharpened

Filter =

Emboss
• Convolve with a filter that highlights gradients in particular directions

Original Embossed

Filter =

Side Note: Separable Filters
• Some filters are separable (e.g., Gaussian)
! First, apply 1-D convolution across every row
! Then, apply 1-D convolution across every column
! HUGE impact on performance (when kernel is big)

Non-Linear Filtering
• Each output pixel is a non-linear function of

input pixels in neighborhood (filter depends on input)

Original Paint Stained Glass

Median or “Despeckling” Filter
• Each output pixel is

median of input pixels
in neighborhood

Bilateral Filter
• Gaussian blur uses same filter for all pixels
! Blurs across edges as much as in other areas

Original Gaussian Blur

Bilateral Filter
• Gaussian blur uses same filter for all pixels
! Prefer a filter that preserves edges (adapts to content)

Original Bilateral Filter

normalized
Gaussian function

Recall: Gaussian Blur
• Output value is weighted sum of values in neighborhood of input

image

0

1

Bilateral Filter
• Combine Gaussian filtering in both spatial domain and color domain

() ()å
Î

--=
S

IIIGG
W

IBilateral
q

qqp
p

p qp ||||||1][
rs ss

Spatial
Proximity
Weight

Color
Proximity
Weight

Bilateral Filtering
• Combine Gaussian filtering in both spatial domain and color domain

ss = 2

ss = 6

ss = 18

sr = 0.1 sr = 0.25
sr = ¥

(Gaussian blur)

input

Bilateral Filtering

Digital Image Processing
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

• Quantization
• Spatial / intensity tradeoff
! Dithering

Quantization
• Reduced intensity resolution
! Frame buffers have limited number of bits per pixel
! Physical devices have limited dynamic range

Effects of Quantization

8 bits / pixel / color 6 bits / pixel / color

Marc Levoy / Hanna-Barbera

Effects of Quantization

5 bits / pixel / color 4 bits / pixel / color

Marc Levoy / Hanna-Barbera

Dithering
• Distribute errors among pixels
! Exploit spatial integration in our eye
! Display greater range of perceptible intensities
! Trade off spatial resolution for intensity resolution

Uniform
Quantization

(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Original
(8 bits)

Classical Halftoning
• Use dots of varying size to represent intensities
! Area of dots proportional to intensity in image

P(x,y)I(x,y)

Classical Halftoning

From Town Topics, Princeton

Digital Halftone Patterns
• Use cluster of pixels to represent intensity

Figure 14.37 from H&B

Error Diffusion Dither
• Spread quantization error over neighbor pixels
! Error dispersed to pixels right and below
! Floyd-Steinberg weights:

Figure 14.42 from H&B

3/16 + 5/16 + 1/16 + 7/16 = 1.0

Error Diffusion Dither

Uniform
Quantization

(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Original
(8 bits)

Next Time…
• Changing pixel values
! Linear: scale, offset, etc.
! Nonlinear: gamma, saturation,

etc.
! Histogram equalization

• Filtering over neighborhoods
! Blur & sharpen
! Detect edges
! Median
! Bilateral filter

• Moving image locations
! Scale
! Rotate
! Warp

• Combining images
! Composite
! Morph

• Quantization
• Spatial / intensity tradeoff
! Dithering

