Character Animation

COS 426, Fall 2022
Computer Animation

- Describing how 3D objects (& cameras) move over time

Pixar
Computer Animation

• Challenge is balancing between …
 • Animator control
 vs.
 • Physical realism
Computer Animation

• Manipulation
 • Posing
 • Effect of pose

• Interpolation
 • Keyframes
 • In-betweens

https://blenderartists.org/

focus.gscept.com
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture

https://blenderartists.org/
focus.gscept.com
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture

https://blenderartists.org/

focus.gscept.com
Deformation

• How to change a character’s pose?
 • Every vertex directly
 • Intuitive computation

https://www.youtube.com/watch?v=oxkf_N-QCNI
Deformation

• A HUGE variety of methods
 • Laplacian mesh editing
 • ARAP
 • CAGE Base
 • Barycentric coordinates
 • Heat diffusion
 • Variational
 • …
Deformation

• A HUGE variety of methods
 • Laplacian mesh editing
 • ARAP
 • CAGE Base
 • Barycentric coordinates
 • Heat diffusion
 • Variational
 • …
Overall framework

1. Compute differential representation

\[\delta_i = L(v_i) = v_i - \frac{1}{d_i} \sum_{j \in N(i)} v_j \]

2. Pose modeling constraints

\[v_i' = u_i, \quad i \in C \]
Overall framework

1. Compute differential representation

\[\delta_i = L(v_i) = v_i - \frac{1}{d_i} \sum_{j \in N(i)} v_j \]

2. Pose modeling constraints

\[v'_i = u_i, \quad i \in C \]

3. Reconstruct the surface – in least-squares sense

\[\begin{pmatrix} L \\ L_c \end{pmatrix} \mathbf{v} = \begin{pmatrix} \delta \\ U \end{pmatrix} \]
Example

Laplacian Mesh Editing

A short editing session with the Octopus
Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

focus.gscept.com
https://blenderartists.org/
Blendshapes

- Blendshapes are an approximate semantic parameterization
- Linear blend of predefined poses
Blendshapes

https://www.youtube.com/watch?v=KPDfMpuK2fQ
Blendshapes

- Usually used for difficult to pose complex deformations
 - Such faces
- Given:
 - A mesh $M = (V, E)$ with m vertices
 - n configurations of the same mesh, $M_b = (V_b, E), b = 1 \ldots n$
Blendshapes

• Usually used for difficult to pose complex deformations
 • Such faces

• Given:
 • A mesh $M = (V, E)$ with m vertices
 • n configurations of the same mesh, $M_b = (V_b, E), b = 1 \ldots n$

• A new configuration is simply:
 • $M' = (\sum_{b=1}^{n} w_b V_b, E)$
Blendshapes

- Usually used for difficult to pose complex deformations
 - Such faces
- Given:
 - A mesh $M = (V, E)$ with m vertices
 - n configurations of the same mesh, $M_b = (V_b, E), b = 1 \ldots n$
- A new configuration is simply:
 - $M' = (\sum_{b=1}^n w_b V_b, E)$
- Delta formulation:
 - $M' = (\sum_{b=1}^n V_0 + w_b (V_b - V_0), E)$
 - A bit more convenient
- M_0 - the rest pose, w_b blend weights
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture
Articulated Figures

- Character poses described by set of rigid bodies connected by “joints”
Articulated Figures

• Well-suited for humanoid characters

- Animation focuses on joint angles, or general transformations

Rose et al. ’96
Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

focus.gscept.com
Forward Kinematics

- Describe motion of articulated character

\[\begin{align*}
X &= (x, y) \\
\Theta_1 & \quad \Theta_2 \\
(0,0) & \quad \text{"End-Effector"}
\end{align*} \]
Forward Kinematics

• Animator specifies joint angles: \(\Theta_1 \) and \(\Theta_2 \)
• Computer finds positions of end-effector: \(X \)
Forward Kinematics

• Animator specifies joint angles: Θ_1 and Θ_2
• Computer finds positions of end-effector: X

\[
X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))
\]
Forward Kinematics Parameterization

- Joint motions specified e.g. by spline curves

\[X = (x, y) \]

\[Q_1, Q_2 \]

\[\Theta_1, \Theta_2 \]

\[(0,0) \]
Example: Walk Cycle

• Articulated figure:
Example: Walk Cycle

• Hip joint orientation:
Example: Walk Cycle

• Knee joint orientation:
Example: Walk Cycle

- Ankle joint orientation:
Example: walk cycle

https://www.youtube.com/watch?v=DuUWxUitJos
Inverse Kinematics

- What if animator knows position of “end-effector”?

\[
X = (x, y)
\]

(0,0)
Inverse Kinematics

- Animator specifies end-effector positions: \(X \)
- Computer finds joint angles: \(\Theta_1 \) and \(\Theta_2 \):
Inverse Kinematics

• Animator specifies end-effector positions: \(X \)
• Computer finds joint angles: \(\Theta_1 \) and \(\Theta_2 \):

\[
\Theta_2 = \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right)
\]

\[
\Theta_1 = \frac{- (l_2 \sin(\Theta_2)) x + (l_1 + l_2 \cos(\Theta_2)) y}{(l_2 \sin(\Theta_2)) y + (l_1 + l_2 \cos(\Theta_2)) x}
\]
Inverse Kinematics

- End-effector positions can be specified by spline curves

\[X = (x, y) \]

\[\Theta_1 \]

\[\Theta_2 \]

\[(0,0) \]
Inverse Kinematics

- Problem for more complex structures
 - System of equations is usually *under-constrained*
 - Multiple solutions

\[
X = (x, y)
\]

Three unknowns: \(\Theta_1, \Theta_2, \Theta_3 \)

Two equations: \(x, y \)
Inverse Kinematics

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

\[X = (x, y) \]
Kinematics

- **Advantages**
 - Simple to implement
 - Complete animator control

- **Disadvantages**
 - Motions *may not follow physical laws*
 - Tedious for animator
Beyond Skeletons...

- Skinning
Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendental bones

- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated
Kinematic Skeletons

• Hierarchy of transformations ("bones")
 • Changes to parent affect all descendental bones

• So far: bones affect objects in scene or parts of a mesh
 • Equivalently, each point on a mesh acted upon by one bone
 • Leads to discontinuities when parts of mesh animated

• Extension: each point on a mesh acted upon by more than one bone
Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - When bones move, influenced vertices also move
Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - When bones move, influenced vertices also move

- Computing a transformation T_v for a skinned vertex
 - For each bone
 - Compute global bone transformation T_b from transformation hierarchy
 - For each vertex
 - Take a linear combination of bone transforms T_v with $T_v = \sum_{b \in B} w^{(v)}_b T_b$
 - Apply transformation T_v to vertex in original pose
Linear Blend Skinning

• Each vertex of skin potentially influenced by all bones
 • Normalized weight vector $w(v)$ gives influence of each bone transform
 • When bones move, influenced vertices also move

• Computing a transformation T_v for a skinned vertex
 • For each bone
 • Compute global bone transformation T_b from transformation hierarchy
 • For each vertex
 • Take a linear combination of bone transforms T_v with
 • Apply transformation T_v to vertex in original pose

$$T_v = \sum_{b \in B} w_b^{(v)} T_b$$

• Equivalently, transformed vertex position is weighted combination of positions transformed by bones

$$v_{transformed} = \sum_{b \in B} w_b^{(v)} (T_b v)$$
Assigning *Weights*: “Rigging”

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
Assigning Weights: “Rigging”

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
 - Other problems with extreme deformations
 - Many solutions
Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/
focus.gscept.com
Keyframe Animation

- Define character poses at specific time steps called “keyframes”
Keyframe Animation

- Interpolate variables describing keyframes to determine poses for character in between
Keyframe Animation

• Inbetweening:
 • Linear interpolation - usually not enough continuity

H&B Figure 16.16
Keyframe Animation

• Inbetweening:
 • Spline interpolation - maybe good enough
Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

focus.gscept.com
Motion Capture

- Measure motion of real characters and then simply “play it back” with kinematics.
Motion Capture

- Measure human motion
- Play back with kinematics

https://www.youtube.com/watch?v=MVvDw15-3e8
Motion Capture for Faces

- Could be applied on different parameters
 - Skeleton Transformations
 - Direct mesh deformation

- Advantage:
 - Physical realism

- Challenge:
 - Animator control
Summary

- **Kinematics**
 - Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation

- **Dynamics**
 - Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation

- **Motion Capture**
 - Compute captures motion of real character and provides tools for animator to edit it