

Character Animation

COS 426, Fall 2022

PRINCETON UNIVERSITY

Computer Animation

• Describing how 3D objects (& cameras) move over time

Computer Animation

- Challenge is balancing between ...
 - Animator control

VS.

• Physical realism

Computer Animation

- Manipulation
 - Posing
 - Effect of pose

- Interpolation
 - Keyframes
 - In-betweens

https://blenderartists.org/

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

• How to change a character's pose?

- Every vertex directly
- Intuitive computation

https://www.youtube.com/watch?v=oxkf_N-QCNI

Deformation

Deformation

- A HUGE variety of methods
 - Laplacian mesh editing
 - ARAP
 - CAGE Base
 - Barycentric coordinates
 - Heat diffusion
 - Variational

•

Deformation

• A HUGE variety of methods

- Laplacian mesh editing
- ARAP
- CAGE Base
- Barycentric coordinates
- Heat diffusion
- Variational

•

Overall framework

1. Compute differential representation

$$\delta_i = L(v_i) = v_i - \frac{1}{d_i} \Sigma_{j \in \mathbb{N}(i)} v_j$$

2. Pose modeling constraints

$$v'_i = u_i, \qquad i \in \boldsymbol{C}$$

Overall framework

1. Compute differential representation

$$\delta_i = L(v_i) = v_i - \frac{1}{d_i} \Sigma_{j \in \mathbb{N}(i)} v_j$$

2. Pose modeling constraints

$$v'_i = u_i, \qquad i \in C$$

3. Reconstruct the surface – in least-squares sense

$$\binom{L}{L_c} \boldsymbol{V} = \binom{\boldsymbol{\delta}}{\boldsymbol{U}}$$

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

Blendshapes

- Blendshapes are an approximate semantic parameterization
- Linear blend of predefined poses

Blendshapes

https://www.youtube.com/watch?v=KPDfMpuK2fQ

- Usually used for difficult to pose complex deformations
 - Such faces
- Given:
 - A mesh M = (V, E) with m vertices
 - *n* configurations of the same mesh, $M_b = (V_b, E), b = 1 \dots n$

Blendshapes

- Usually used for difficult to pose complex deformations
 - Such faces
- Given:
 - A mesh M = (V, E) with m vertices
 - *n* configurations of the same mesh, $M_b = (V_b, E), b = 1 \dots n$
- A new configuration is simply:
 - $M' = (\Sigma_{b=1\dots n} \mathbf{w}_{\mathbf{b}} \mathbf{V}_{\mathbf{b}}, \mathbf{E})$

- Usually used for difficult to pose complex deformations
 - Such faces
- Given:
 - A mesh M = (V, E) with m vertices
 - *n* configurations of the same mesh, $M_b = (V_b, E), b = 1 \dots n$
- A new configuration is simply:
 - $M' = (\Sigma_{b=1\dots n} \mathbf{w}_{\mathbf{b}} \mathbf{V}_{\mathbf{b}}, \mathbf{E})$
- Delta formulation:
 - $M' = (\Sigma_{b=1...n}V_0 + w_b(V_b V_0), E)$
 - A bit more convenient
- M_0 the rest pose, w_b blend weights

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

Articulated Figures

 Character poses described by set of rigid bodies connected by "joints"

Articulated Figures

• Well-suited for humanoid characters

Rose et al. '96

• Animation focuses on joint angles, or general transformations

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

 $X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$

Forward Kinematics Parameterization

• Joint motions specified e.g. by spline curves

Example: Walk Cycle

Hip joint orientation:

Watt & Watt

Example: Walk Cycle

Knee joint orientation:

Watt & Watt

Example: Walk Cycle

Watt & Watt

Example: walk cycle

https://www.youtube.com/watch?v=DuUWxUitJos

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2 :

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2 :

• End-effector postions can be specified by spline curves

• Problem for more complex structures

- System of equations is usually *under-constrained*
- Multiple solutions

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

Kinematics

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions *may not follow physical laws*
 - Tedious for animator

Beyond Skeletons...

Skinning

creativecrash.com

Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendent bones
- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated

Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendent bones
- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated
- Extension: each point on a mesh acted upon by more than one bone

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - When bones move, influenced vertices also move

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - When bones move, influenced vertices also move
- Computing a transformation T_{v} for a skinned vertex
 - For each bone
 - Compute global bone transformation $T_{\rm b}$ from transformation hierarchy
 - For each vertex
 - Take a linear combination of bone transforms T_v with
 - Apply transformation T_{v} to vertex in original pose

$$T_v = \sum_{b \in B} w_b^{(v)} T_b$$

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - · When bones move, influenced vertices also move
- Computing a transformation T_{v} for a skinned vertex
 - For each bone
 - Compute global bone transformation $T_{b}% ^{}$ from transformation hierarchy
 - For each vertex
 - Take a linear combination of bone transforms T_v with T_v
 - Apply transformation T_{ν} to vertex in original pose

$$T_{v} = \sum_{b \in B} w_b^{(v)} T_b$$

 Equivalently, transformed vertex position is weighted combination of positions transformed by bones

$$Y_{transformed} = \sum_{b \in B} w_b^{(v)} (T_b v)$$

Assigning Weights: "Rigging"

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!

Assigning Weights: "Rigging"

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
 - Other problems with extreme deformations
 - Many solutions

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

 Define character poses at specific time steps called "keyframes"

Lasseter `87

 Interpolate variables describing keyframes to determine poses for character in between

Lasseter `87

• Inbetweening:

• Linear interpolation - usually not enough continuity

H&B Figure 16.16

• Inbetweening:

• Spline interpolation - maybe good enough

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons
- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

Motion Capture

 Measure motion of real characters and then simply "play it back" with kinematics

Captured Motion

Motion Capture

- Measure human motion
- Play back with kinematics

https://www.youtube.com/watch?v=MVvDw15-3e8

Motion Capture for Faces

Could be applied on different parameters

- Skeleton Transformations
- Direct mesh deformation
- Advantage:
 - Physical realism
- Challenge:
 - Animator control

Summary

Kinematics

 Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation

Dynamics

 Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation

Motion Capture

 Compute captures motion of real character and provides tools for animator to edit it