

Rasterization: Shading and Visibility

COS 426, Fall 2022

PRINCETON UNIVERSITY

Rasterization Pipeline (for direct illumination)

Rasterization

- Scan conversion (last time)
 - Determine which pixels to fill
- Shading
 - $\circ~$ Determine a color for each filled pixel
- Texture mapping
 - Describe shading variation within polygon interiors
- Visible surface determination
 - Figure out which surface is front-most at every pixel

Shading

• How do we choose a color for each filled pixel?

Emphasis on methods that can be implemented in hardware...

Taking Inspiration from Ray Casting

Simplest shading approach is to perform <u>independent</u> lighting calculation for every pixel

$$I = I_E + K_A I_{AL} + \sum_i \left(K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^n I_i \right)$$

Polygon Shading

- Increase efficiency by exploiting spatial coherence
 - Illumination calculations for pixels covered by same primitive are related to each other

Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading

Flat Shading

What if a faceted object is illuminated only by directional light sources and is viewed from infinitely far away

Flat Shading

- One illumination calculation per polygon is enough
 - Assign all pixels inside each polygon the same color

Flat Shading

- Objects look like they are composed of polygons
 - OK for polyhedral objects
 - Not so good for smooth surfaces

Mach Band Effect

 Visual system perceives edges between adjacent shades of gray with exaggerated contrast

Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading

- Approximate smooth surface by polygonal mesh with a normal stored at each vertex
 - "Shared normals"
 - Calculated as (possibly area-weighted) average of normals of adjacent faces

Watt Plate 7

- One lighting calculation per vertex
 - Pixel colors inside polygon interpolated from colors computed at vertices

- Bilinear interpolation of colors at vertices
 - Down and across scan lines = barycentric interpolation!
 - Specifically, linearly interpolate at left and right endpoints of each span, then linearly interpolate within scanlines

- Smooth shading over adjacent polygons
 - Curved surfaces
 - Illumination highlights
 - Soft shadows

Watt Plate 7

Mesh with shared normals at vertices

- Produces smoothly shaded polygonal mesh
 - Piecewise linear (!) approximation
 - Need fine mesh to capture subtle lighting effects

Flat Shading

Gouraud Shading

Mach Band Effect

 Mach Band Effect also affects Gouraud Shading for piecewise linear interpolation

Actual Intensity

Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading (≠ Phong reflectance model)

Phong Shading

What if polygonal mesh is too coarse to capture illumination effects in polygon interiors?

Phong Shading

- One lighting calculation per pixel
 - Approximate surface normals for points inside polygons by bilinear interpolation of normals from vertices
 - Normalize interpolated normal to unit length
 - Finally, do per-pixel lighting calculation using interpolated normal

Phong Shading

• Bilinear interpolation of surface normals at vertices

Polygon Shading Algorithms

Wireframe Flat

Gouraud

Phong

Demo: https://threejs.org/docs/scenes/material-browser.html#MeshPhongMaterial

Watt Plate 7

Shading Issues

- Problems with interpolated shading:
 - Polygonal *silhouettes* still obvious
 - Perspective distortion (due to *screen-space interpolation*)
 - Problems at T-junctions

The results of interpolated-shading is not independent of the projected polygons position (Foley Figure 14.22).

Rasterization

- Scan conversion
 - Determine which pixels to fill
- Shading
 - $\circ~$ Determine a color for each filled pixel

Texture mapping

- $\circ~$ Describe shading variation within polygon interiors
- Visible surface determination
 - Figure out which surface is front-most at every pixel

Textures

- Describe color variation in interior of 3D polygon
 - When scan converting a polygon, **vary pixel colors** according to values fetched from a texture image

Angel Figure 9.3

Textures

• Add visual detail to surfaces of 3D objects

[Daren Horley]

Texture Mapping

- Steps:
 - 1. Define texture image
 - 2. Specify mapping from texture to surface
 - 3. Look up texture values during scan conversion

Texture Mapping

- When scan converting, map from ...
 - image coordinate system (x,y) to
 - modeling coordinate system (u,v) to
 - texture image (s,t)

Texture Overview

- Texture mapping stages
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Texture Overview

- Texture mapping stages
 Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

 Q: How do we decide *where* on the geometry each color from the image should go?

Option1: unfold the surface

[Piponi2000]

Option2: make an atlas

[Sander2001]

Texture Overview

- Texture mapping stages
 - Parameterization
 - ➤ Mapping
 - Filtering
- Texture mapping applications
 Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Texture Mapping

- Scan conversion
 - Interpolate texture coordinates down/across scan lines

Hill Figure 8.42

Texture Mapping

- Scan conversion
 - Interpolate texture coordinates down/across scan lines
 - Distortion due to bilinear interpolation approximation
 - » Cut polygons into smaller ones, or

Texture Mapping

- Scan conversion
 - Interpolate texture coordinates down/across scan lines
 - Distortion due to bilinear interpolation approximation
 - » Cut polygons into smaller ones, or
 - » Perspective divide at each pixel

Assume triangle attribute varies linearly across the triangle

Attribute's value at 3D (non-homogeneous) point $P = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is then:

f(x, y, z) = ax + by + cz

Get 2D homogeneous representation : $\begin{bmatrix} x_{2D-H} & y_{2D-H} & w \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}^T$

Assume triangle attribute varies linearly across the triangle Attribute's value at 3D (non-homogeneous) point $P = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is then:

f(x, y, z) = ax + by + cz

Get 2D homogeneous representation : $\begin{bmatrix} x_{2D-H} & y_{2D-H} & w \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}^T$

Rewrite attribute equation for f in terms of 2D homogeneous coordinates: $f = a x_{\rm 2D-H} + b y_{\rm 2D-H} + c w$

Assume triangle attribute varies linearly across the triangle Attribute's value at 3D (non-homogeneous) point $P = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is then:

f(x, y, z) = ax + by + cz

Get 2D homogeneous representation : $\begin{bmatrix} x_{2D-H} & y_{2D-H} & w \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}^T$

Rewrite attribute equation for f in terms of 2D homogeneous coordinates: $f = a x_{\rm 2D-H} + b y_{\rm 2D-H} + c w$

$$\frac{f}{w} = a\frac{x_{2\text{D-H}}}{w} + b\frac{y_{2\text{D-H}}}{w} + c$$

Assume triangle attribute varies linearly across the triangle Attribute's value at 3D (non-homogeneous) point $P = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is then:

$$f(x, y, z) = ax + by + cz$$

Get 2D homogeneous representation : $\begin{bmatrix} x_{2D-H} & y_{2D-H} & w \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}^T$

Rewrite attribute equation for f in terms of 2D homogeneous coordinates: $f = a x_{\rm 2D-H} + b y_{\rm 2D-H} + c w$

$$\frac{f}{w} = a\frac{x_{2D-H}}{w} + b\frac{y_{2D-H}}{w} + c$$
$$\frac{f}{w} = ax_{2D} + by_{2D} + c$$

Where $\begin{bmatrix} x_{2D} & y_{2D} \end{bmatrix}^T$ are projected screen 2D coordinates (after homogeneous divide)

Assume triangle attribute varies linearly across the triangle Attribute's value at 3D (non-homogeneous) point $P = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is then:

$$f(x, y, z) = ax + by + cz$$

Get 2D homogeneous representation : $\begin{bmatrix} x_{2D-H} & y_{2D-H} & w \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}^T$

Rewrite attribute equation for f in terms of 2D homogeneous coordinates: $f = ax_{2D-H} + by_{2D-H} + cw$

$$\begin{split} \frac{f}{w} &= a \frac{x_{2\text{D-H}}}{w} + b \frac{y_{2\text{D-H}}}{w} + c \\ \frac{f}{w} &= a x_{2\text{D}} + b y_{2\text{D}} + c \end{split} & \ \ \begin{array}{l} \text{Where } \begin{bmatrix} x_{2\text{D}} & y_{2\text{D}} \end{bmatrix}^T \text{ are projected} \\ \text{screen 2D coordinates (after homogeneous divide)} \end{array} \\ \text{So } \dots \quad \frac{f}{w} \quad \text{is affine function of 2D screen coordinates...} \end{split}$$

- Compute at each vertex *after perspective transformation*:
 - "Numerators" s/w, t/w
 - "Denominator" 1/w
- Linearly interpolate s/w, and t/w and 1/w across the polygon
- At each pixel:
 - Perform perspective division of interpolated texture coordinates (s/w, t/w) by interpolated 1/w (i.e., numerator over denominator) to get (s, t)

Hill Figure 8.42

Texture Overview

- Texture mapping stages
 - Parameterization
 - Mapping
 - ➤ Filtering
- Texture mapping applications
 Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

• Must sample texture to determine color at each pixel in image

Angel Figure 9.4

• Aliasing is a problem

Point sampling

• Ideally, use elliptically shaped convolution filters

In practice, use rectangles or squares

- Size of filter depends on projective warp
 - Compute prefiltered images to avoid run-time cost
 - » Mipmaps
 - » Summed area tables

Magnification

Minification

Angel Figure 9.14

Mipmaps

- Keep textures prefiltered at multiple resolutions
 - $\circ~$ Usually powers of 2

Mipmaps

- Keep textures prefiltered at multiple resolutions
 - $\circ~$ Usually powers of 2
 - For each pixel, linearly interpolate between two closest levels (i.e., trilinear filtering)
 - Fast, easy for hardware

- At each texel keep sum of all values down & left
 - $\circ~$ To compute sum of all values within a rectangle, simply combine four entries: \mathbf{S}_1

- At each texel keep sum of all values down & left
 - $\circ~$ To compute sum of all values within a rectangle, simply combine four entries: S_1-S_2

- At each texel keep sum of all values down & left
 - $\circ~$ To compute sum of all values within a rectangle, simply combine four entries: $S_1-S_2-S_3$

- At each texel keep sum of all values down & left
 - $\circ~$ To compute sum of all values within a rectangle, simply combine four entries: $S_1-S_2-S_3+S_4$
 - Better ability to capture oblique projections, but still not perfect

Texture Overview

- Texture mapping stages
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering

Modulation textures

• Texture values scale result of lighting calculation

Illumination Mapping

- Map texture values to surface material parameter
 - K_A $\circ K_{D}$ $\circ K_S$ • **K**_T • **n** Texture value $I = I_{E} + K_{A}I_{A} + \sum_{I} \left(K_{D}(s,t)(N \cdot L) + K_{S}(V \cdot R)^{n} \right) S_{L}I_{L} + K_{T}I_{T} + K_{S}I_{S}$

Bump/Normal Mapping

- Texture values determine or perturb surface normals:
 - $\circ~$ Encode normals in RGB (R \rightarrow N_x, G \rightarrow N_y, B \rightarrow N_z, 0..255 \rightarrow -1..1)
 - Or encode normal offsets in RGB
 - Or use gradient of grayscale image as normal offset ("bump mapping")

Normal Mapping

Graphisoft.com

Normal Mapping

Graphisoft.com

Environment Mapping • Texture values are reflected off surface patch Surface **Pixel Projection** onto Environment Map Gamer3D/Wikipedia Pixel Area Projection **Reference Point** H&B Figure 14.93

Image-Based Rendering

 Map photographic textures to provide details for coarsely detailed polygonal model

Solid textures

- Texture values indexed by 3D location (x,y,z)
 - Expensive storage, or

Solid textures

- Texture values indexed by 3D location (x,y,z)
 - Expensive storage, or
 - Compute on the fly,
 e.g. Perlin noise →

Rasterization

- Scan conversion
 - Determine which pixels to fill
- Shading
 - Determine a color for each filled pixel
- Texture mapping
 - $\circ~$ Describe shading variation within polygon interiors
- Visible surface determination
 - Figure out which surface is front-most at every pixel

Visible Surface Determination

- Make sure only front-most surface contributes to color at every pixel

Depth sort

- "Painter's algorithm"
 - First sort surfaces in order of decreasing maximum depth

Depth sort

- "Painter's algorithm"
 - First sort surfaces in order of decreasing maximum depth
 - Scan convert surfaces in back-to-front order, always overwriting pixels

3D Rasterization Pipeline

Z-Buffer

- Maintain color & depth of closest object per pixel
 - Framebuffer now RGBAz initialize z to far plane
 - Update only pixels with depth closer than currently in z-buffer
 - Depths are interpolated for in-primitive pixels from vertices, just like colors

Z-Buffer

Hidden Surface Removal Algorithms

Rasterization Summary

- Scan conversion
 Sweep-line algorithm
- Shading algorithms

 Flat, Gouraud, Phong
- Texture mapping

 Mipmaps
- Visibiliity determination

 Z-buffer

This is all in hardware

GPU Architecture

Actually ...

• Modern graphics hardware is programmable

Trend ...

• GPU is general-purpose parallel computer

