
Rasterization: Shading and Visibility
COS 426, Fall 2022

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Rasterization Pipeline (for direct illumination)

Scan Conversion

P1

P2

P3

Rasterization
• Scan conversion (last time)
! Determine which pixels to fill

ØShading
! Determine a color for each filled pixel

• Texture mapping
! Describe shading variation within polygon interiors

• Visible surface determination
! Figure out which surface is front-most at every pixel

P1

P2

P3

Shading
• How do we choose a color for each filled pixel?

Emphasis on methods that can be implemented in hardware…

Taking Inspiration from Ray Casting
• Simplest shading approach is to perform independent lighting

calculation for every pixel

()å ×+×++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Polygon Shading
• Increase efficiency by exploiting spatial coherence
! Illumination calculations for pixels covered by same primitive are

related to each other

()å ×+×++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Similar…

Polygon Shading Algorithms
• Flat Shading
• Gouraud Shading

• Phong Shading

Flat Shading
• What if a faceted object is illuminated only by directional light

sources and is viewed from infinitely far away

()å ×+×++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Flat Shading
• One illumination calculation per polygon is enough
! Assign all pixels inside each polygon the same color

N

Flat Shading
• Objects look like they are composed of polygons
! OK for polyhedral objects
! Not so good for smooth surfaces

Mach Band Effect
• Visual system perceives edges between adjacent shades of gray

with exaggerated contrast

Polygon Shading Algorithms
• Flat Shading
• Gouraud Shading

• Phong Shading

Gouraud Shading
• Approximate smooth surface by polygonal mesh with a normal

stored at each vertex
! “Shared normals”
! Calculated as (possibly area-weighted) average of normals of adjacent faces

Watt Plate 7

Gouraud Shading
• One lighting calculation per vertex
! Pixel colors inside polygon interpolated from colors computed at vertices

()å ×+×++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Gouraud Shading
• Bilinear interpolation of colors at vertices
! Down and across scan lines = barycentric interpolation!
! Specifically, linearly interpolate at left and right endpoints of each span,

then linearly interpolate within scanlines

Gouraud Shading
• Smooth shading over adjacent polygons
! Curved surfaces
! Illumination highlights
! Soft shadows

Mesh with shared normals at vertices

Watt Plate 7

Gouraud Shading
• Produces smoothly shaded polygonal mesh
! Piecewise linear (!) approximation
! Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading

Mach Band Effect
• Mach Band Effect also affects Gouraud Shading for

piecewise linear interpolation

Actual Intensity

Polygon Shading Algorithms
• Flat Shading
• Gouraud Shading

• Phong Shading (¹ Phong reflectance model)

Phong Shading
• What if polygonal mesh is too coarse to capture illumination effects

in polygon interiors?

()å ×+×++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Phong Shading
• One lighting calculation per pixel
! Approximate surface normals for points inside polygons by

bilinear interpolation of normals from vertices
! Normalize interpolated normal to unit length
! Finally, do per-pixel lighting calculation using interpolated normal

Phong Shading
• Bilinear interpolation of surface normals at vertices

Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7Demo: https://threejs.org/docs/scenes/material-browser.html#MeshPhongMaterial

Shading Issues
• Problems with interpolated shading:
! Polygonal silhouettes still obvious
! Perspective distortion (due to screen-space interpolation)
! Problems at T-junctions

Rasterization
• Scan conversion
! Determine which pixels to fill

• Shading
! Determine a color for each filled pixel

ØTexture mapping
! Describe shading variation within polygon interiors

• Visible surface determination
! Figure out which surface is front-most at every pixel

Surface
ImageTexture

Textures
• Describe color variation in interior of 3D polygon
! When scan converting a polygon, vary pixel colors

according to values fetched from a texture image

Angel Figure 9.3

Textures
• Add visual detail to surfaces of 3D objects

[Daren Horley]

Texture Mapping
• Steps:

1. Define texture image
2. Specify mapping from texture to surface
3. Look up texture values during scan conversion

(0,0)

(1,0)

(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

Texture Mapping
• When scan converting, map from …

• image coordinate system (x,y) to
• modeling coordinate system (u,v) to
• texture image (s,t)

(0,0)

(1,0)

(1,1)
(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

Texture Overview
• Texture mapping stages
! Parameterization
! Mapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering

Texture Overview
• Texture mapping stages

ØParameterization
! Mapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering

Texture Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
each color from the image should go?

Texture Parameterization

[Paul Bourke]

Texture Parameterization

[Piponi2000]

Option1: unfold the surface

Texture Parameterization

[Sander2001]

charts atlas surface

Option2: make an atlas

Texture Overview
• Texture mapping stages
! Parameterization
ØMapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering

Texture Mapping
• Scan conversion
! Interpolate texture coordinates down/across scan lines

Perspective Divide

Linear interpolation
of texture coordinates

Correct interpolation

Hill Figure 8.42

Perspective Divide

Texture Mapping
• Scan conversion
! Interpolate texture coordinates down/across scan lines
! Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or

Texture Mapping
• Scan conversion
! Interpolate texture coordinates down/across scan lines
! Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or
» Perspective divide at each pixel

Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

Where are projected
screen 2D coordinates (after
homogeneous divide)

Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

So … is affine function of 2D screen coordinates…

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

Where are projected
screen 2D coordinates (after
homogeneous divide)

Perspective Divide
• Compute at each vertex after perspective transformation:
! “Numerators” s/w, t/w
! “Denominator” 1/w

• Linearly interpolate s/w, and t/w and 1/w across the polygon

• At each pixel:
! Perform perspective division of interpolated texture coordinates (s/w, t/w) by

interpolated 1/w (i.e., numerator over denominator) to get (s, t)

Perspective Divide

Linear interpolation
of texture coordinates

Correct interpolation

Hill Figure 8.42

Texture Overview
• Texture mapping stages
! Parameterization
! Mapping
ØFiltering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering

Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color at each pixel in image

Texture Filtering
• Aliasing is a problem

Point sampling Area filtering

Texture Filtering
• Ideally, use elliptically shaped convolution filters

In practice, use rectangles or squares

Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
! Compute prefiltered images to avoid run-time cost

» Mipmaps
» Summed area tables

Magnification Minification

Mipmaps
• Keep textures prefiltered at multiple resolutions
! Usually powers of 2

Mipmaps
• Keep textures prefiltered at multiple resolutions
! Usually powers of 2
! For each pixel, linearly interpolate between two closest levels

(i.e., trilinear filtering)
! Fast, easy for hardware

Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1

S1

Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1 – S2

S1S2

Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1 – S2 – S3

S1

S3

S2

Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1 – S2 – S3 + S4
! Better ability to capture oblique projections, but still not perfect

! (Mipmaps are more common.)

S1

S3S4

S2

Texture Overview
• Texture mapping stages
! Parameterization
! Mapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering

Modulation textures
• Texture values scale result of lighting calculation

()()SSTTL LL
n

SDAAE IKIKISRVKLNKIKItsTI ++×+×++= å)()(),(

W
oo

d
te

xt
ur

e

Texture
value

Illumination Mapping

() SSTTL LL
n

SDAAE IKIKISRVKLNtsKIKII ++×+×++= å)())(,(

• Map texture values to surface material parameter
! KA
! KD
! KS
! KT
! n

Texture
value

Bump/Normal Mapping
• Texture values determine or perturb surface normals:
! Encode normals in RGB (R → Nx, G → Ny, B → Nz, 0..255 → -1..1)
! Or encode normal offsets in RGB
! Or use gradient of grayscale image as normal offset (“bump mapping”)

Normal Mapping

Graphisoft.com

Normal Mapping

Graphisoft.com

Environment Mapping
• Texture values are reflected off surface patch

H&B Figure 14.93

Gamer3D/Wikipedia

Image-Based Rendering
• Map photographic textures to provide details for coarsely detailed

polygonal model

Solid textures
• Texture values indexed by 3D

location (x,y,z)
• Expensive storage, or

Solid textures
• Texture values indexed by 3D

location (x,y,z)
• Expensive storage, or
• Compute on the fly,

e.g. Perlin noise à

Rasterization
• Scan conversion
! Determine which pixels to fill

• Shading
! Determine a color for each filled pixel

• Texture mapping
! Describe shading variation within polygon interiors

ØVisible surface determination
! Figure out which surface is front-most at every pixel

Visible Surface Determination
• Make sure only front-most surface contributes to color at every pixel

Depth sort
• “Painter’s algorithm”
! First sort surfaces in order of decreasing maximum depth

A
BE D

C

!"#$%&'()$

"*"

Depth sort
• “Painter’s algorithm”
! First sort surfaces in order of decreasing maximum depth
! Scan convert surfaces in back-to-front order, always overwriting pixels

A
BE D

C

!"#$%&'()$

"*"

3D Rasterization Pipeline
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Depth sort

Depth sort comments
! O(n log n)
! Implemented in software
! Render pixels of every polygon

Z-Buffer
• Maintain color & depth of closest object per pixel
! Framebuffer now RGBAz – initialize z to far plane
! Update only pixels with depth closer than currently in z-buffer
! Depths are interpolated for in-primitive pixels from vertices, just like colors

Z-Buffer
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates
Z-Buffer

Z-buffer comments
+ Polygons rasterized in any order
+ Process one polygon at a time
+ Suitable for hardware pipeline
- Requires extra memory for z-buffer
! Commonly in hardware

Hidden Surface Removal Algorithms

[Sutherland ‘74]

Only z-buffer and ray tracing

commonly used today

Rasterization Summary
• Scan conversion
! Sweep-line algorithm

• Shading algorithms
! Flat, Gouraud, Phong

• Texture mapping
! Mipmaps

• Visibiliity determination
! Z-buffer

This is all in hardware

GPU Architecture

GeForce 6 Series Architecture GPU Gems 2, NVIDIA

Actually …
• Modern graphics hardware is programmable

www.nvidia.com/cuda

Trend …
• GPU is general-purpose parallel computer

www.nvidia.com/cuda

