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Rasterization
• Scan conversion (last time)
! Determine which pixels to fill

ØShading
! Determine a color for each filled pixel

• Texture mapping
! Describe shading variation within polygon interiors

• Visible surface determination
! Figure out which surface is front-most at every pixel



P1

P2

P3

Shading
• How do we choose a color for each filled pixel? 

Emphasis on methods that can be implemented in hardware… 



Taking Inspiration from Ray Casting
• Simplest shading approach is to perform independent lighting 

calculation for every pixel
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Polygon Shading
• Increase efficiency by exploiting spatial coherence
! Illumination calculations for pixels covered by same primitive are

related to each other
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Similar…



Polygon Shading Algorithms
• Flat Shading
• Gouraud Shading

• Phong Shading



Flat Shading
• What if a faceted object is illuminated only by directional light 

sources and is viewed from infinitely far away
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Flat Shading
• One illumination calculation per polygon is enough
! Assign all pixels inside each polygon the same color

N



Flat Shading
• Objects look like they are composed of polygons
! OK for polyhedral objects
! Not so good for smooth surfaces



Mach Band Effect
• Visual system perceives edges between adjacent shades of gray 

with exaggerated contrast



Polygon Shading Algorithms
• Flat Shading
• Gouraud Shading

• Phong Shading



Gouraud Shading
• Approximate smooth surface by polygonal mesh with a normal

stored at each vertex
! “Shared normals”
! Calculated as (possibly area-weighted) average of normals of adjacent faces

Watt Plate 7



Gouraud Shading
• One lighting calculation per vertex
! Pixel colors inside polygon interpolated from colors computed at vertices
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Gouraud Shading
• Bilinear interpolation of colors at vertices
! Down and across scan lines = barycentric interpolation!
! Specifically, linearly interpolate at left and right endpoints of each span,

then linearly interpolate within scanlines



Gouraud Shading
• Smooth shading over adjacent polygons
! Curved surfaces
! Illumination highlights
! Soft shadows

Mesh with shared normals at vertices

Watt Plate 7



Gouraud Shading
• Produces smoothly shaded polygonal mesh
! Piecewise linear (!) approximation 
! Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading



Mach Band Effect
• Mach Band Effect also affects Gouraud Shading for

piecewise linear interpolation

Actual Intensity



Polygon Shading Algorithms
• Flat Shading
• Gouraud Shading

• Phong Shading  (¹ Phong reflectance model)



Phong Shading
• What if polygonal mesh is too coarse to capture illumination effects 

in polygon interiors?
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Phong Shading
• One lighting calculation per pixel
! Approximate surface normals for points inside polygons by

bilinear interpolation of normals from vertices
! Normalize interpolated normal to unit length
! Finally, do per-pixel lighting calculation using interpolated normal



Phong Shading
• Bilinear interpolation of surface normals at vertices



Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7Demo: https://threejs.org/docs/scenes/material-browser.html#MeshPhongMaterial



Shading Issues
• Problems with interpolated shading:
! Polygonal silhouettes still obvious
! Perspective distortion (due to screen-space interpolation)
! Problems at T-junctions



Rasterization
• Scan conversion
! Determine which pixels to fill

• Shading
! Determine a color for each filled pixel

ØTexture mapping
! Describe shading variation within polygon interiors

• Visible surface determination
! Figure out which surface is front-most at every pixel



Surface
ImageTexture

Textures
• Describe color variation in interior of 3D polygon
! When scan converting a polygon, vary pixel colors

according to values fetched from a texture image

Angel Figure 9.3



Textures
• Add visual detail to surfaces of 3D objects

[Daren Horley]



Texture Mapping
• Steps:

1. Define texture image
2. Specify mapping from texture to surface
3. Look up texture values during scan conversion
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Texture Mapping
• When scan converting, map from …

• image coordinate system (x,y) to
• modeling coordinate system (u,v) to
• texture image (s,t)
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Texture Overview
• Texture mapping stages
! Parameterization
! Mapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering



Texture Overview
• Texture mapping stages

ØParameterization
! Mapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering



Texture Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
each color from the image should go?



Texture Parameterization

[Paul Bourke]



Texture Parameterization

[Piponi2000]

Option1: unfold the surface



Texture Parameterization

[Sander2001]

charts atlas surface

Option2: make an atlas



Texture Overview
• Texture mapping stages
! Parameterization
ØMapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering



Texture Mapping
• Scan conversion
! Interpolate texture coordinates down/across scan lines



Perspective Divide

Linear interpolation
of texture coordinates

Correct interpolation

Hill Figure 8.42



Perspective Divide



Texture Mapping
• Scan conversion
! Interpolate texture coordinates down/across scan lines
! Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or



Texture Mapping
• Scan conversion
! Interpolate texture coordinates down/across scan lines
! Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or
» Perspective divide at each pixel



Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:



Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Rewrite attribute equation for in terms of 2D homogeneous coordinates:



Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Rewrite attribute equation for in terms of 2D homogeneous coordinates:



Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

Where are projected 
screen 2D coordinates (after 
homogeneous divide)



Perspective Divide

Get 2D homogeneous representation :

Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is then:

So … is affine function of 2D screen coordinates…

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

Where are projected 
screen 2D coordinates (after 
homogeneous divide)



Perspective Divide
• Compute at each vertex after perspective transformation:
! “Numerators” s/w, t/w  
! “Denominator” 1/w 

• Linearly interpolate s/w, and t/w and 1/w across the polygon

• At each pixel: 
! Perform perspective division of interpolated texture coordinates (s/w, t/w) by 

interpolated 1/w (i.e., numerator over denominator) to get (s, t)



Perspective Divide

Linear interpolation
of texture coordinates

Correct interpolation

Hill Figure 8.42



Texture Overview
• Texture mapping stages
! Parameterization
! Mapping
ØFiltering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering
! Non-photorealistic rendering



Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color at each pixel in image



Texture Filtering
• Aliasing is a problem

Point sampling Area filtering



Texture Filtering
• Ideally, use elliptically shaped convolution filters

In practice, use rectangles or squares



Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
! Compute prefiltered images to avoid run-time cost

» Mipmaps
» Summed area tables

Magnification Minification



Mipmaps
• Keep textures prefiltered at multiple resolutions
! Usually powers of 2



Mipmaps
• Keep textures prefiltered at multiple resolutions
! Usually powers of 2
! For each pixel, linearly interpolate between two closest levels

(i.e., trilinear filtering) 
! Fast, easy for hardware



Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1

S1



Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1 – S2

S1S2



Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1 – S2 – S3

S1

S3

S2



Summed-area tables
• At each texel keep sum of all values down & left
! To compute sum of all values within a rectangle,

simply combine four entries: S1 – S2 – S3 + S4
! Better ability to capture oblique projections, but still not perfect

! (Mipmaps are more common.)

S1

S3S4

S2



Texture Overview
• Texture mapping stages
! Parameterization
! Mapping
! Filtering

• Texture mapping applications
! Modulation textures
! Illumination mapping
! Bump mapping
! Environment mapping
! Image-based rendering



Modulation textures
• Texture values scale result of lighting calculation
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Illumination Mapping
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• Map texture values to surface material parameter
! KA
! KD
! KS
! KT
! n

Texture
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Bump/Normal Mapping
• Texture values determine or perturb surface normals:
! Encode normals in RGB (R → Nx, G → Ny, B → Nz, 0..255 → -1..1)
! Or encode normal offsets in RGB
! Or use gradient of grayscale image as normal offset (“bump mapping”)



Normal Mapping

Graphisoft.com



Normal Mapping

Graphisoft.com



Environment Mapping
• Texture values are reflected off surface patch 

H&B Figure 14.93

Gamer3D/Wikipedia



Image-Based Rendering
• Map photographic textures to provide details for coarsely detailed 

polygonal model



Solid textures
• Texture values indexed by 3D 

location (x,y,z)
• Expensive storage, or



Solid textures
• Texture values indexed by 3D 

location (x,y,z)
• Expensive storage, or
• Compute on the fly,

e.g. Perlin noise à



Rasterization
• Scan conversion
! Determine which pixels to fill

• Shading
! Determine a color for each filled pixel

• Texture mapping
! Describe shading variation within polygon interiors

ØVisible surface determination
! Figure out which surface is front-most at every pixel



Visible Surface Determination
• Make sure only front-most surface contributes to color at every pixel



Depth sort
• “Painter’s algorithm”
! First sort surfaces in order of decreasing maximum depth
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Depth sort
• “Painter’s algorithm”
! First sort surfaces in order of decreasing maximum depth
! Scan convert surfaces in back-to-front order, always overwriting pixels
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3D Rasterization Pipeline
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Depth sort comments
! O(n log n)
! Implemented in software
! Render pixels of every polygon



Z-Buffer
• Maintain color & depth of closest object per pixel
! Framebuffer now RGBAz – initialize z to far plane
! Update only pixels with depth closer than currently in z-buffer
! Depths are interpolated for in-primitive pixels from vertices, just like colors



Z-Buffer
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Z-buffer comments
+ Polygons rasterized in any order
+ Process one polygon at a time
+ Suitable for hardware pipeline
- Requires extra memory for z-buffer
! Commonly in hardware



Hidden Surface Removal Algorithms

[Sutherland ‘74]

Only z-buffer and ray tracing

commonly used today



Rasterization Summary
• Scan conversion
! Sweep-line algorithm

• Shading algorithms
! Flat, Gouraud, Phong

• Texture mapping
! Mipmaps

• Visibiliity determination
! Z-buffer

This is all in hardware



GPU Architecture

GeForce 6 Series Architecture GPU Gems 2, NVIDIA



Actually …
• Modern graphics hardware is programmable

www.nvidia.com/cuda



Trend …
• GPU is general-purpose parallel computer

www.nvidia.com/cuda


