

The 3D Rasterization Pipeline

COS 426, Fall 2022

3D Rendering Scenarios

Offline

- One image generated with as much quality as possible for a particular set of rendering parameters
 - » Take as much time as is needed (minutes)
 - » Targets photorealistism, movies, etc.

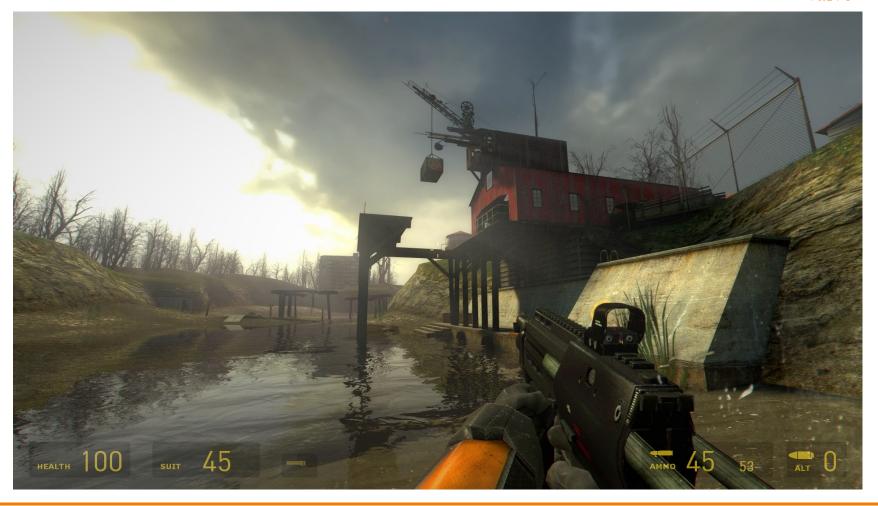
Interactive

- Images generated dynamically, in fraction of a second (e.g., 1/30)
 as user controls rendering parameters (e.g., camera)
 - » Achieve highest quality possible in given time
 - » Visualization, games, etc.

3D Polygon Rendering

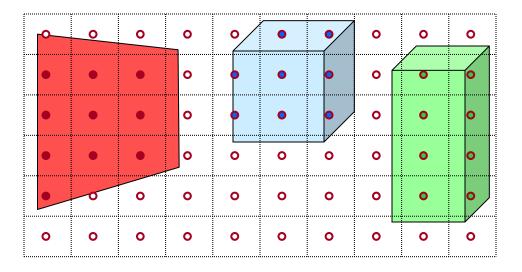
Many applications render 3D polygons with direct illumination

Valve



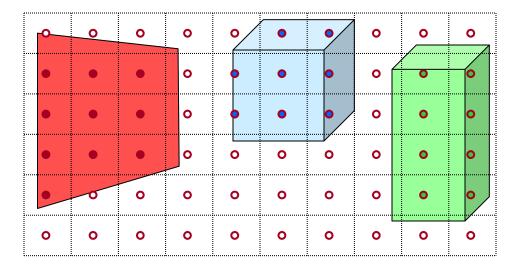
Ray Casting Revisited

- For each sample ...
 - Construct ray from eye position through view plane
 - Find first surface intersected by ray through pixel
 - Compute color of sample based on illumination



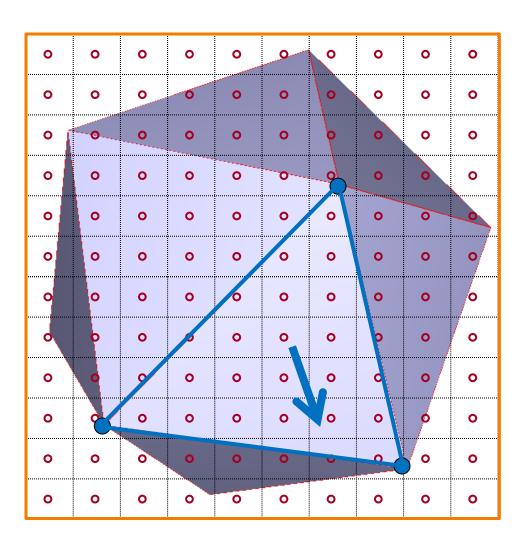
3D Polygon Rasterization

 We can render polygons faster if we take advantage of spatial coherence



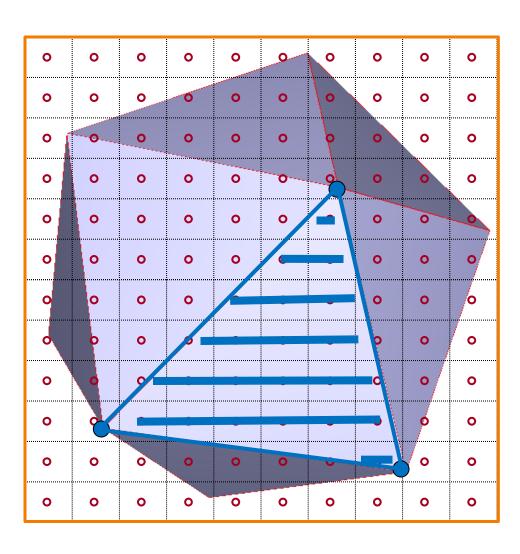
3D Polygon Rasterization

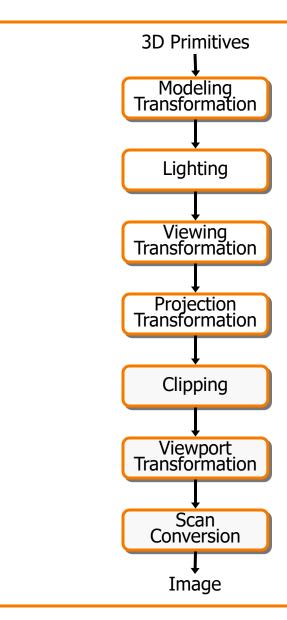
• How?



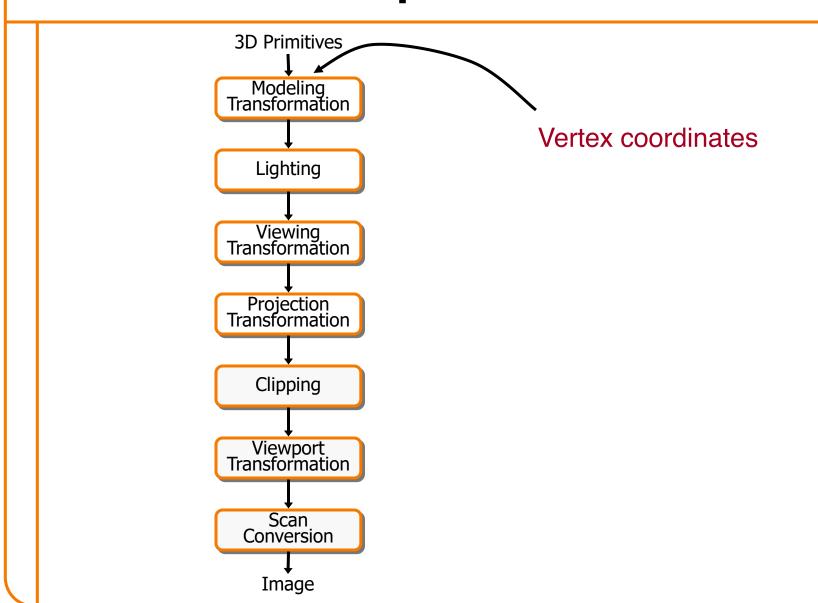
3D Polygon Rasterization

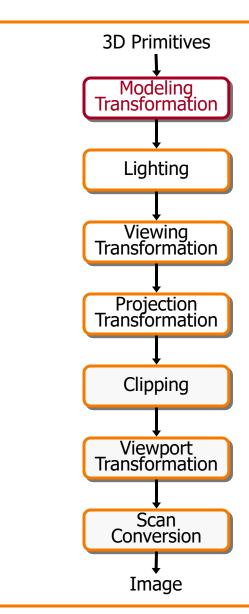
• How?



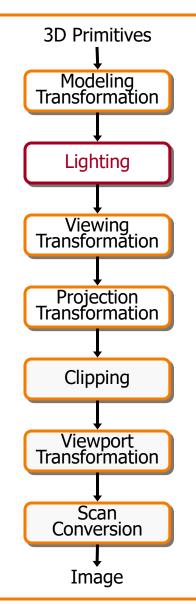


This is a pipelined sequence of operations to draw 3D primitives into a 2D image





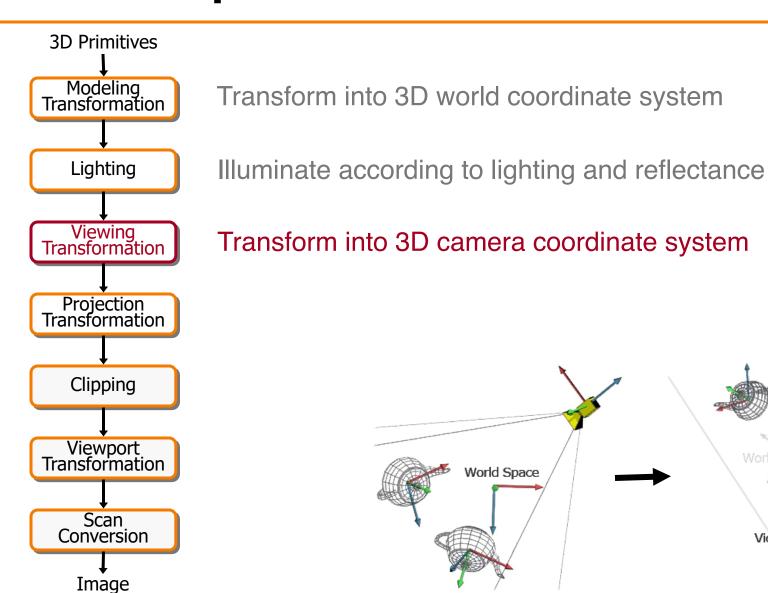
Transform into 3D world coordinate system



Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

View Space



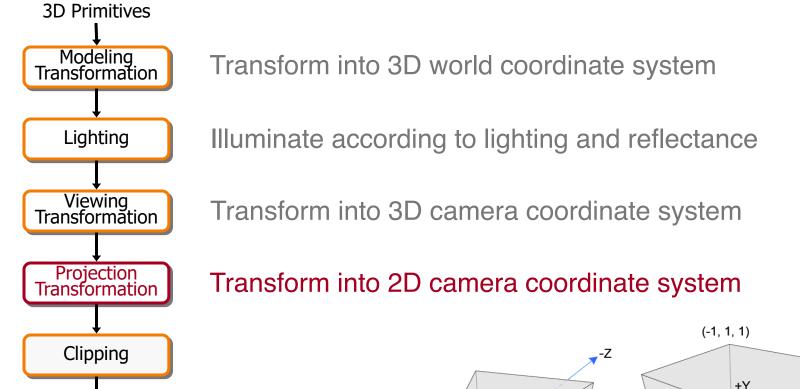
Viewport

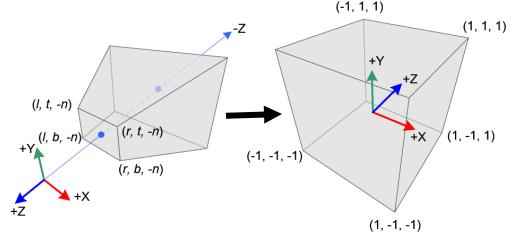
Transformation

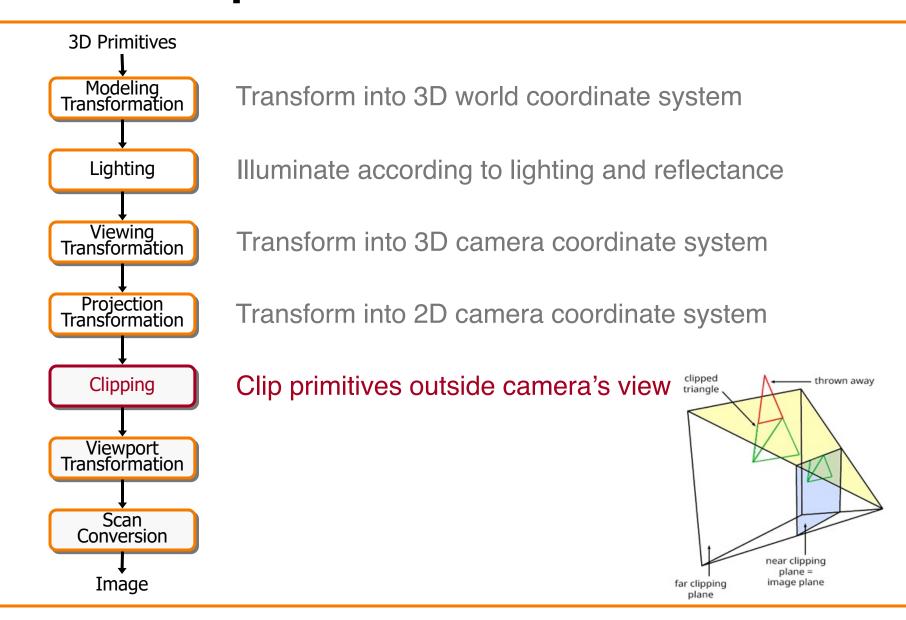
Scan

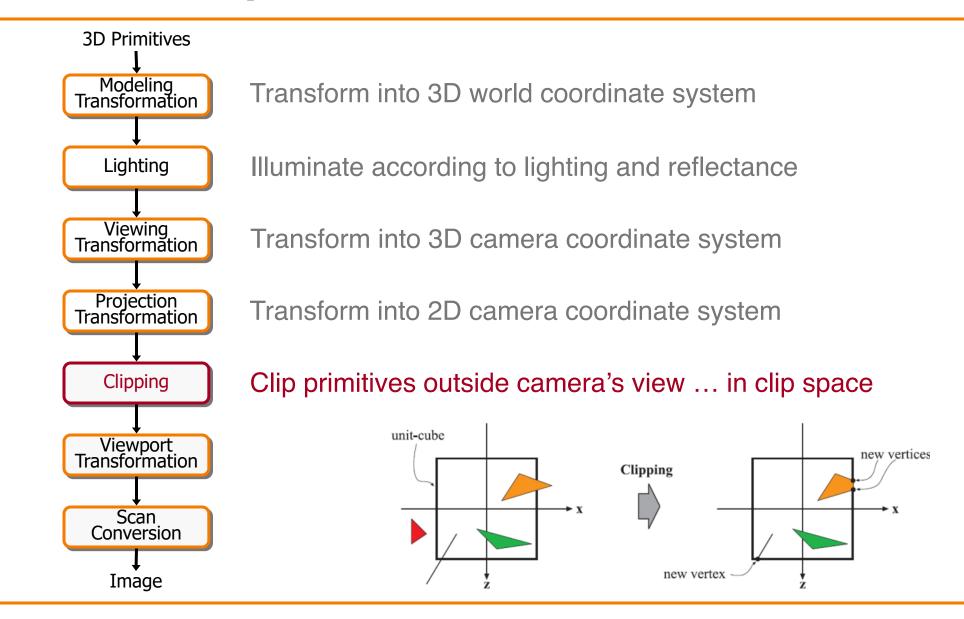
Conversion

Image





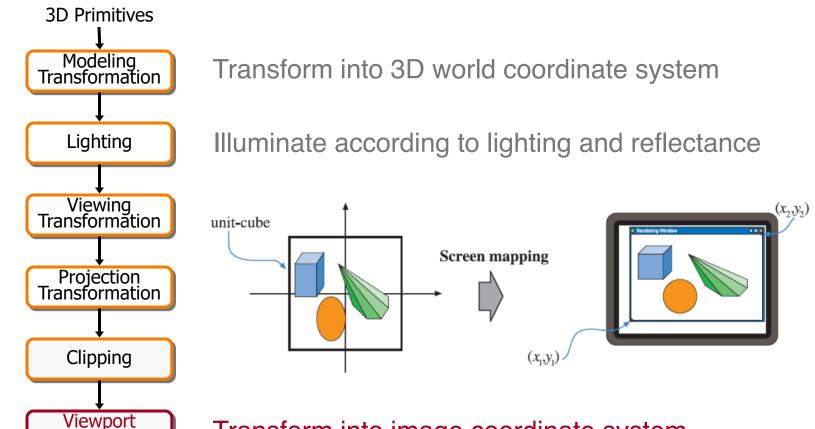




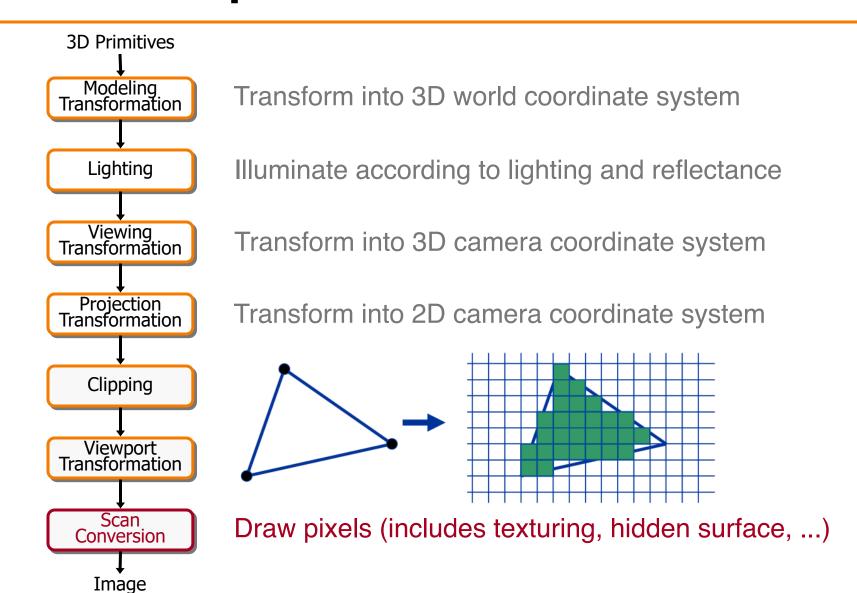
Transformation

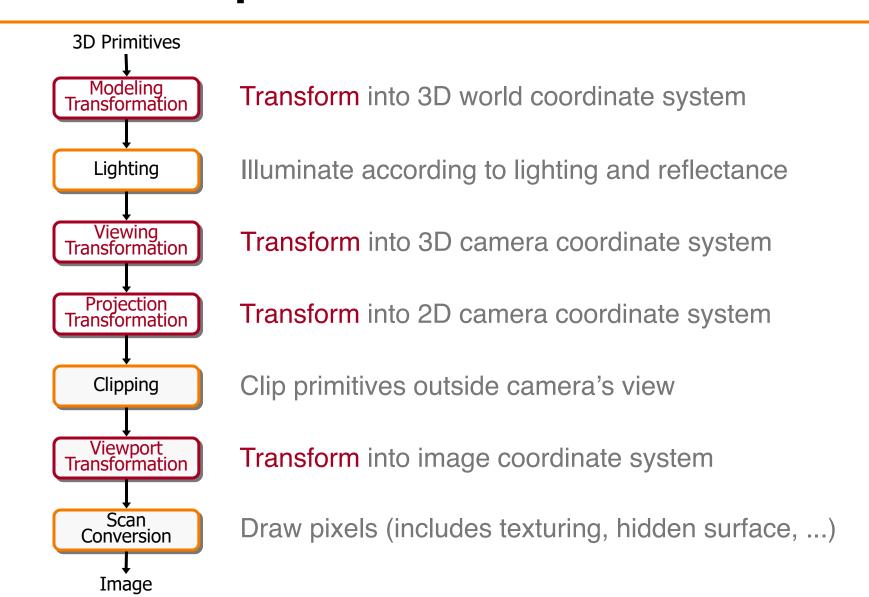
Scan Conversion

Image

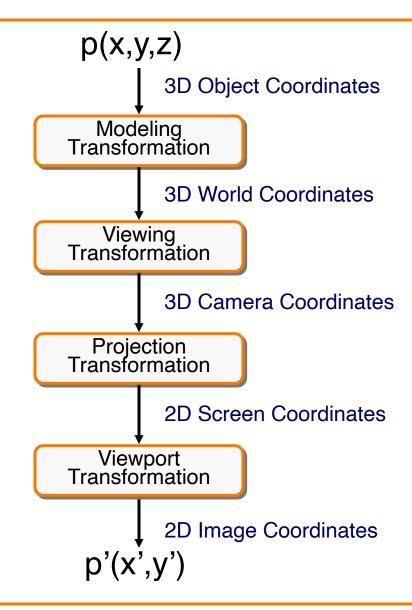


Transform into image coordinate system

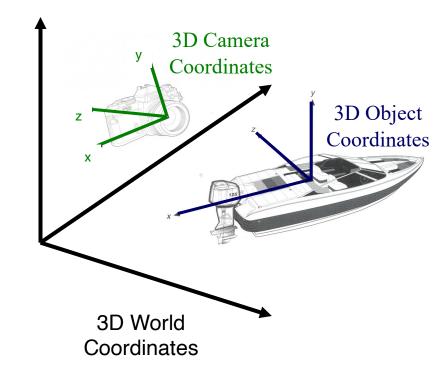




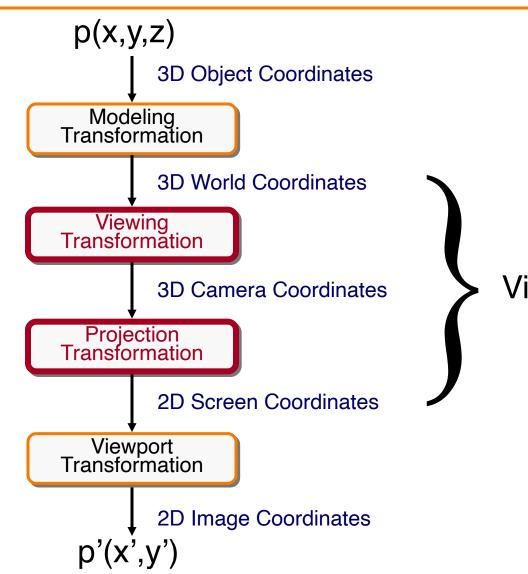
Transformations



Transformations map points from one coordinate system to another



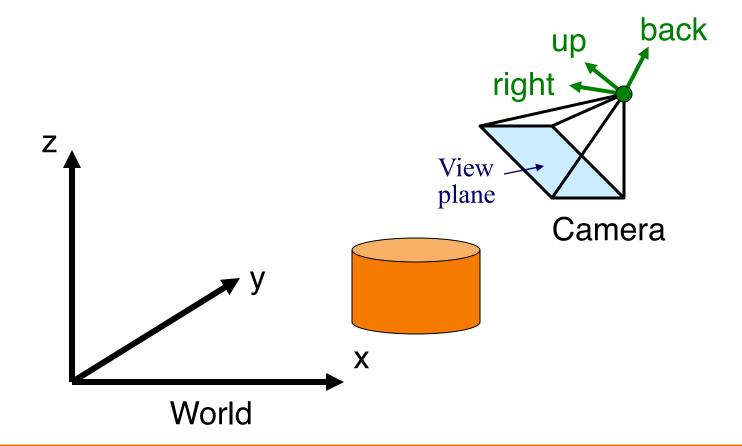
Viewing Transformations



Viewing Transformations

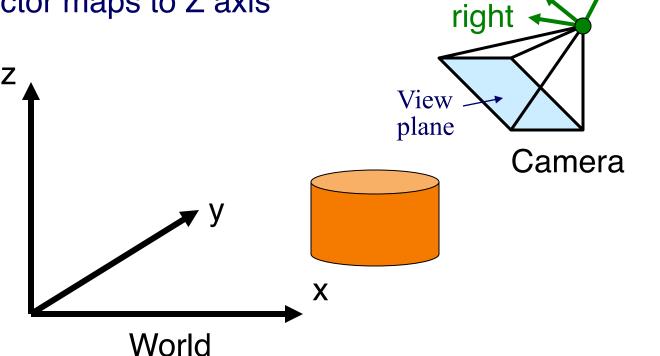
Review: Viewing Transformation

- Mapping from world to camera coordinates
 - Eye position maps to origin



Review: Viewing Transformation

- Mapping from world to camera coordinates
 - Eye position maps to origin
 - Right vector maps to X axis
 - Up vector maps to Y axis
 - Back vector maps to Z axis

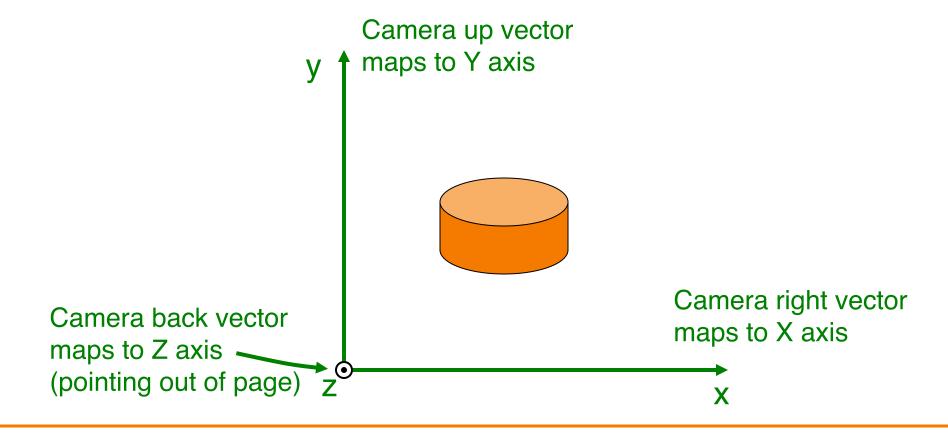


back

up

Review: Camera Coordinates

- Canonical coordinate system
 - Convention is right-handed (looking down -z axis)
 - Convenient for projection, clipping, etc.



Finding the viewing transformation

- We have the camera (in world coordinates)
- We want T taking objects from world to camera

$$p^{c} = T p^{w}$$

Trick: find T⁻¹ taking objects in camera to world

$$p^{W} = T^{-1}p^{C}$$

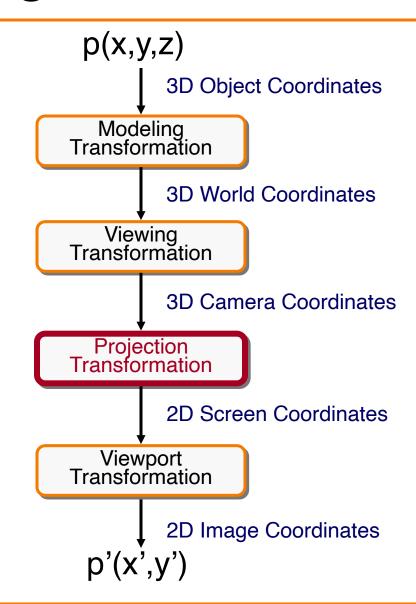
Finding the Viewing Transformation

- Trick: map from camera coordinates to world
 - Origin maps to eye position
 - Z axis maps to Back vector
 - Y axis maps to Up vector
 - X axis maps to Right vector

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} R_x & U_x & B_x & E_x \\ R_y & U_y & B_y & E_y \\ R_z & U_z & B_z & E_z \\ R_w & U_w & B_w & E_w \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

This matrix is T⁻¹ so we invert it to get T ... easy!

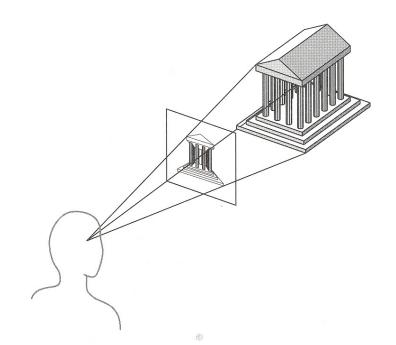
Viewing Transformations



Viewing Transformations

Projection

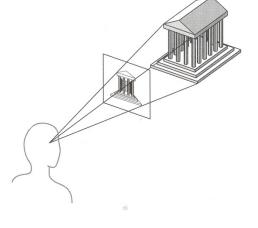
- General definition:
 - Transform points in n-space to m-space (m<n)
- In computer graphics:
 - Map 3D camera coordinates to 2D screen coordinates

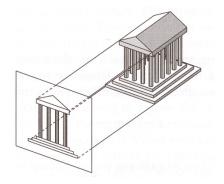


Perspective vs. Parallel

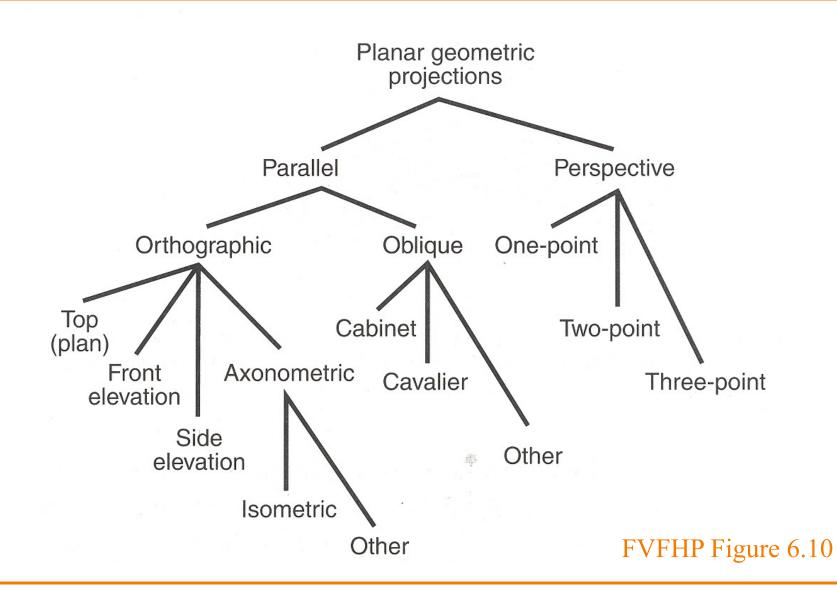
- Perspective projection
 - + Size varies inversely with distance looks realistic
 - Distance and angles are not (in general) preserved
 - Parallel lines do not (in general) remain parallel

- Parallel projection
 - + Good for exact measurements
 - + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

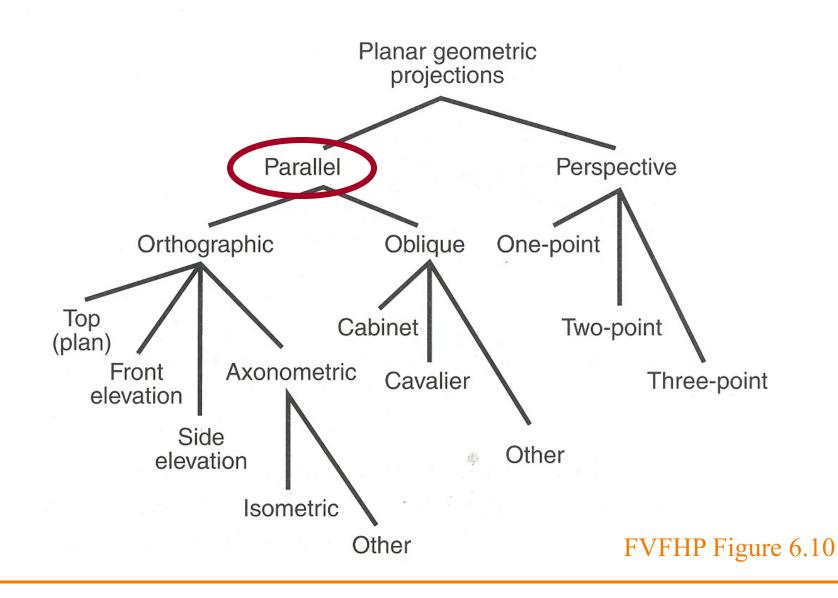




Taxonomy of Projections

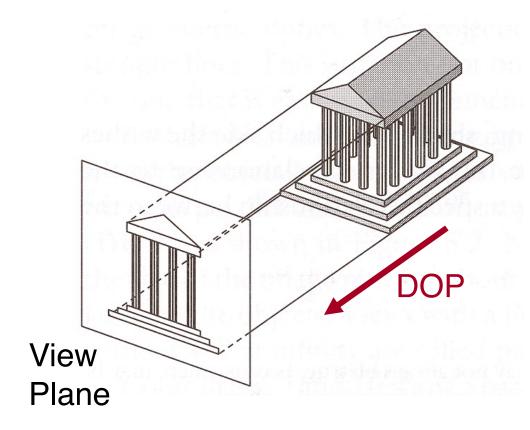


Taxonomy of Projections



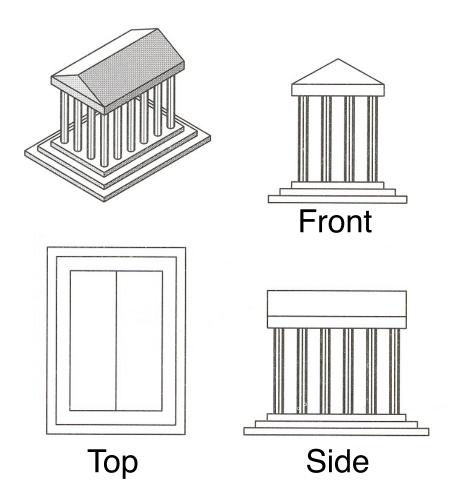
Parallel Projection

- Center of projection is at infinity
 - Direction of projection (DOP) same for all points



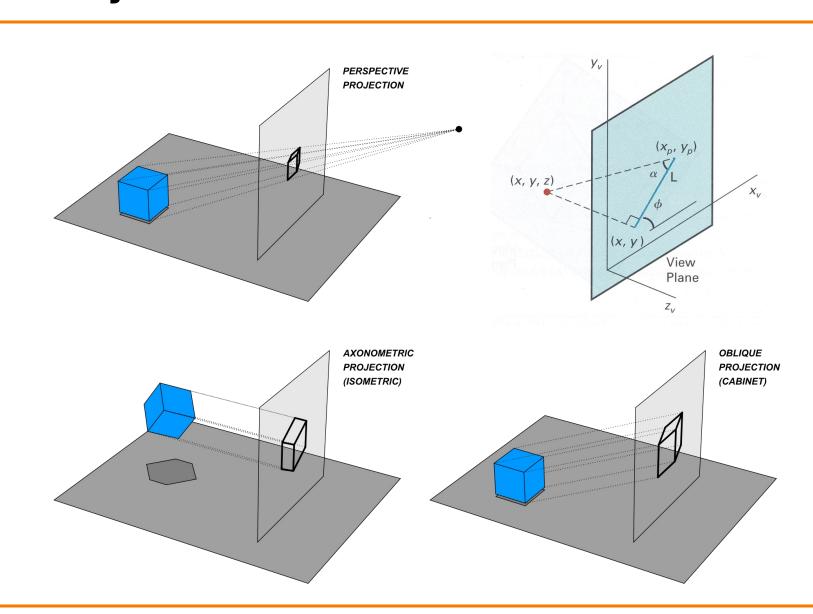
Orthographic Projections

DOP perpendicular to view plane



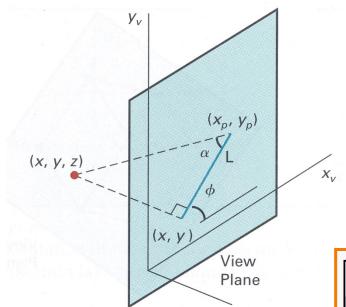
Angel Figure 5.5

Parallel Projection Matrix



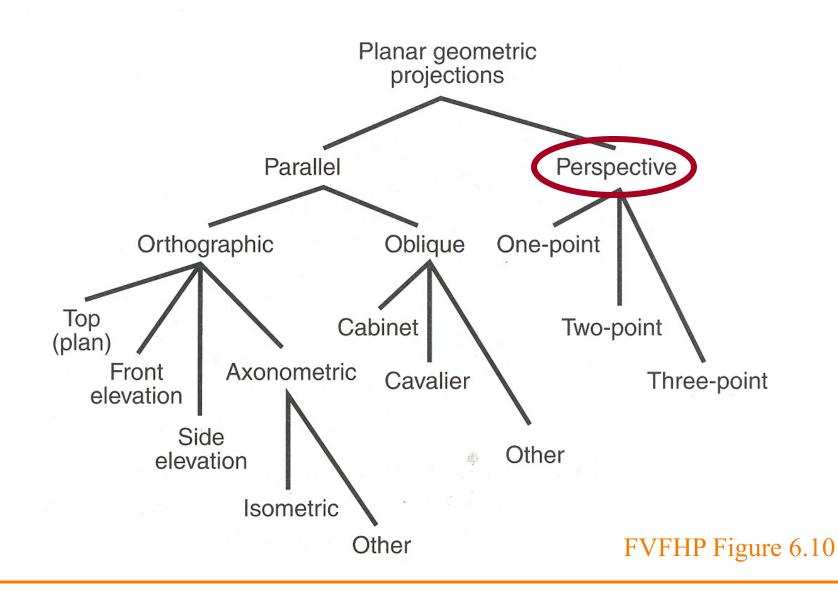
Parallel Projection Matrix

General parallel projection transformation:



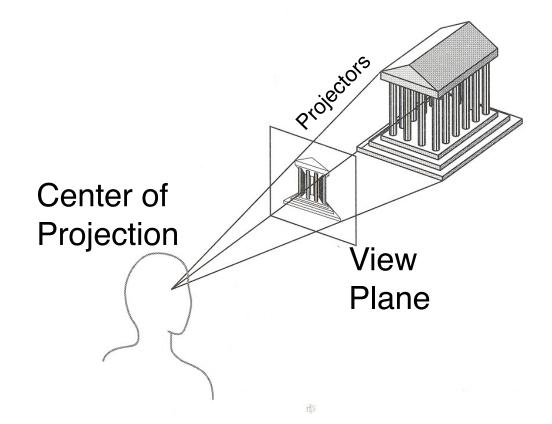
$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ w_s \end{bmatrix} = \begin{bmatrix} 1 & 0 & L\cos\phi & 0 \\ 0 & 1 & L\sin\phi & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Taxonomy of Projections



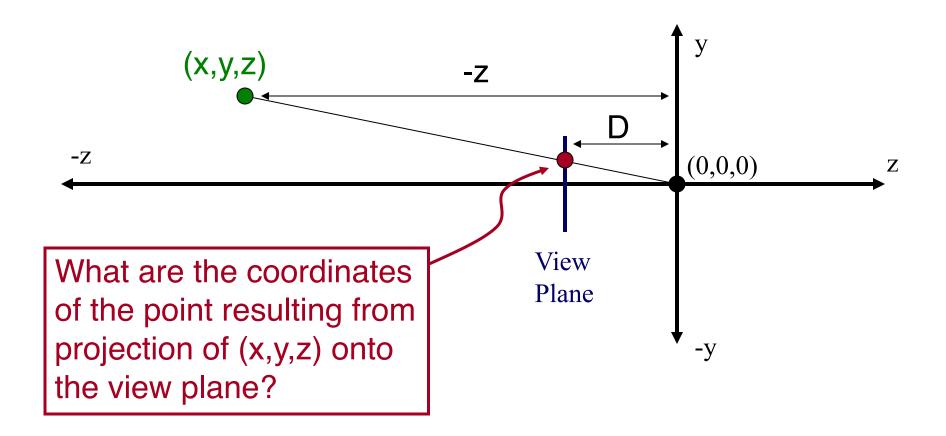
Return to Perspective Projection

 Map points onto "view plane" along "projectors" emanating from "center of projection" (COP)



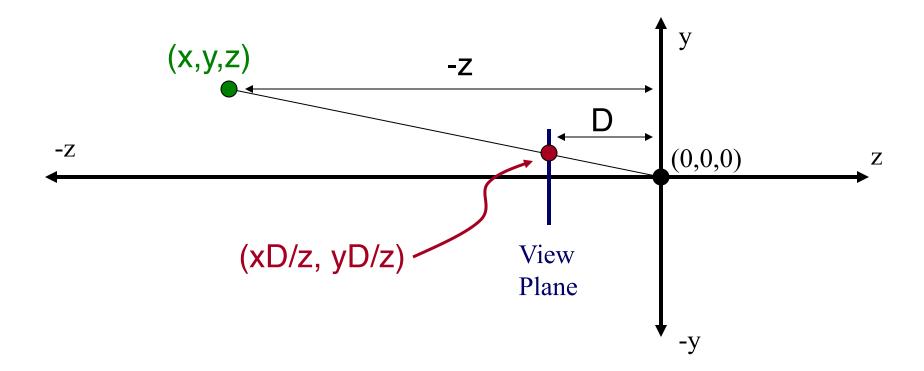
Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles



Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles



4x4 matrix representation?

$$x_{s} = x_{c}D/z_{c}$$

$$y_{s} = y_{c}D/z_{c}$$

$$z_{s} = D$$

$$w_{s} = 1$$

4x4 matrix representation?

$$x_s = x_c D / z_c$$
 $x_s = x' / w'$ $x' = x_c$
 $y_s = y_c D / z_c$ $y_s = y' / w'$ $y' = y_c$
 $z_s = D$ $z_s = z' / w'$ $z' = z_c$
 $w_s = 1$ $w' = z_c / D$

4x4 matrix representation?

$$x_s = x_c D / z_c$$
 $x_s = x' / w'$ $x' = x_c$
 $y_s = y_c D / z_c$ $y_s = y' / w'$ $y' = y_c$
 $z_s = D$ $z_s = z' / w'$ $z' = z_c$
 $w_s = 1$ $w' = z_c / D$

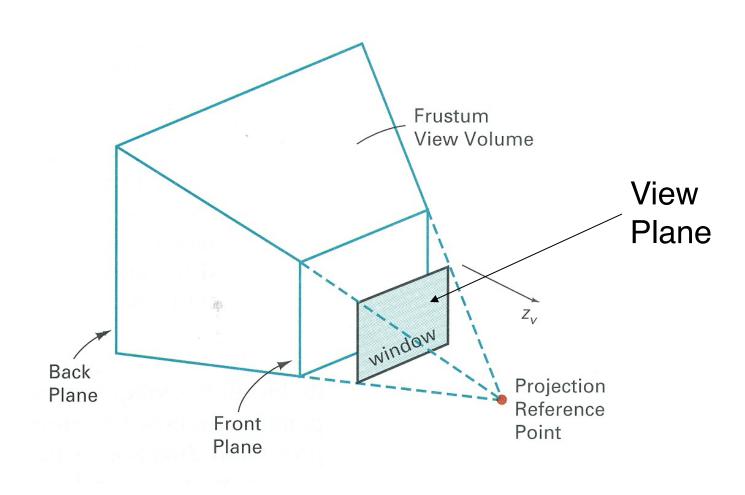
$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ w_s \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/D & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

 In practice, want to compute a value related to depth to include in z-buffer

$$x_s = x_c D / z_c$$
 $x_s = x' / w'$ $x' = x_c$
 $y_s = y_c D / z_c$ $y_s = y' / w'$ $y' = y_c$
 $z_s = -D / z_c$ $z_s = z' / w'$ $z' = -1$
 $w_s = 1$ $w' = z_c / D$

$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ w_s \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1/D & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

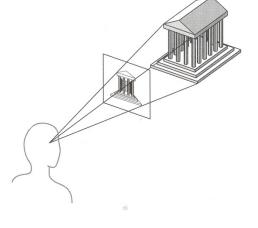
Perspective Projection View Volume

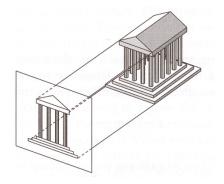


Perspective vs. Parallel

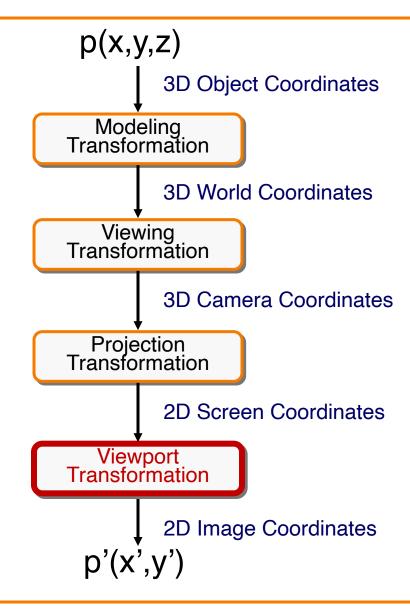
- Perspective projection
 - + Size varies inversely with distance looks realistic
 - Distance and angles are not (in general) preserved
 - Parallel lines do not (in general) remain parallel

- Parallel projection
 - + Good for exact measurements
 - + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

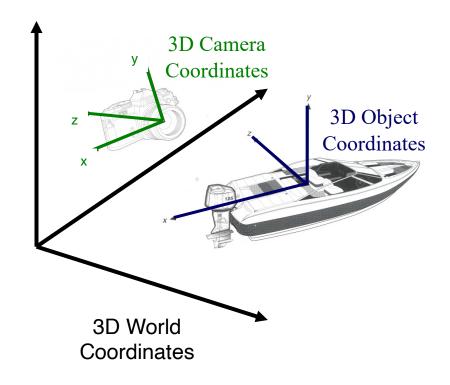




Transformations

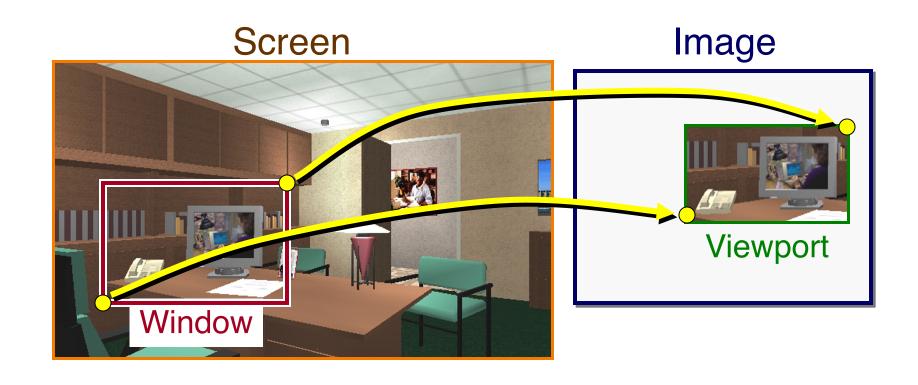


Transformations map points from one coordinate system to another



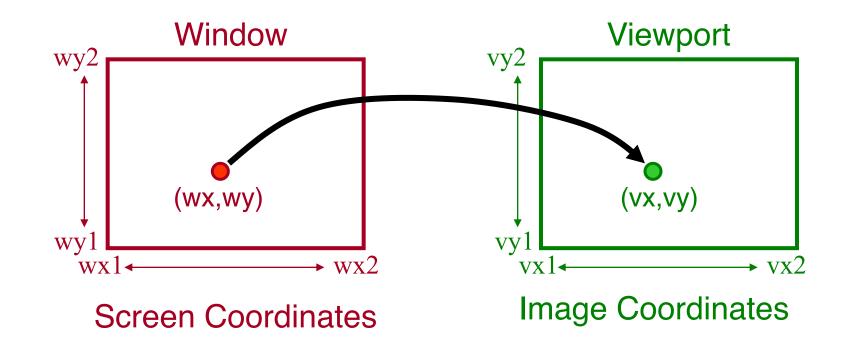
Viewport Transformation

 Transform 2D geometric primitives from screen coordinate system (normalized device coordinates) to image coordinate system (pixels)



Viewport Transformation

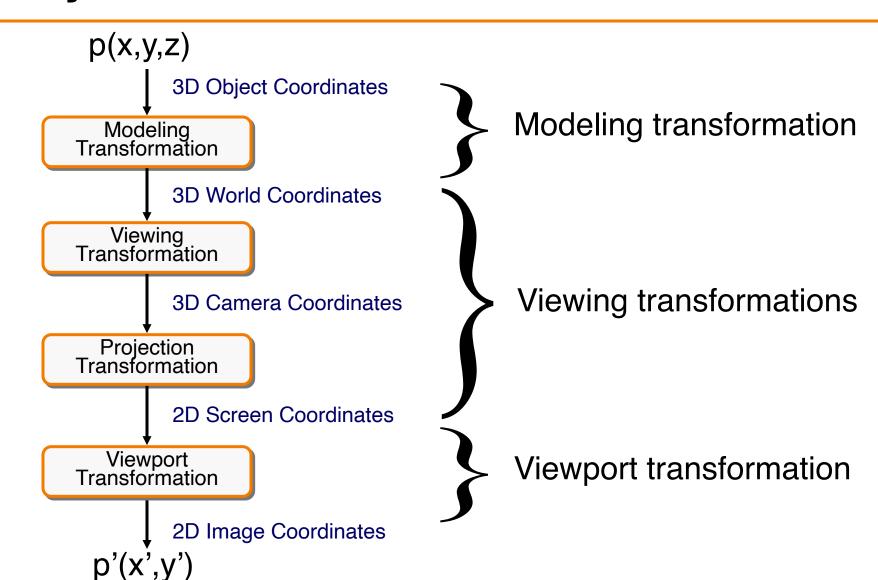
Window-to-viewport mapping

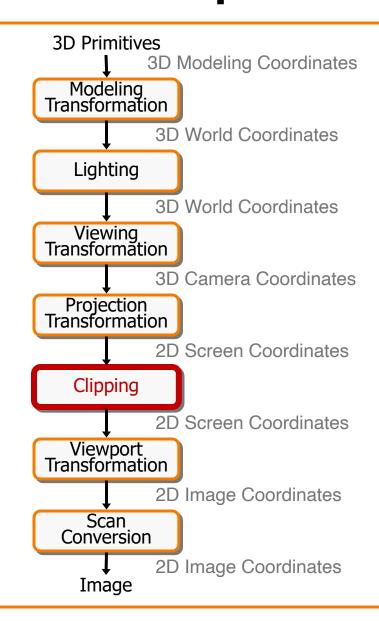


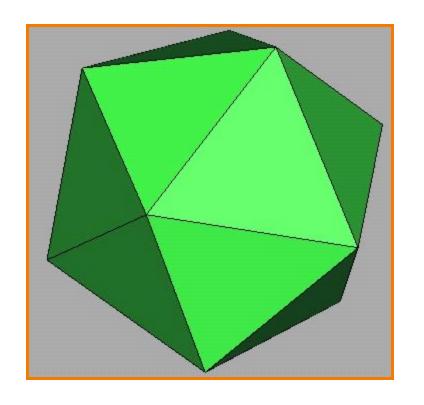
```
vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);

vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);
```

Summary of Transformations

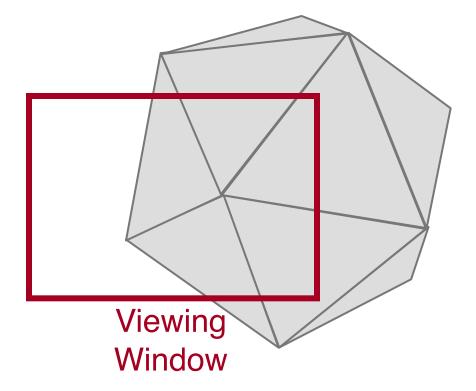






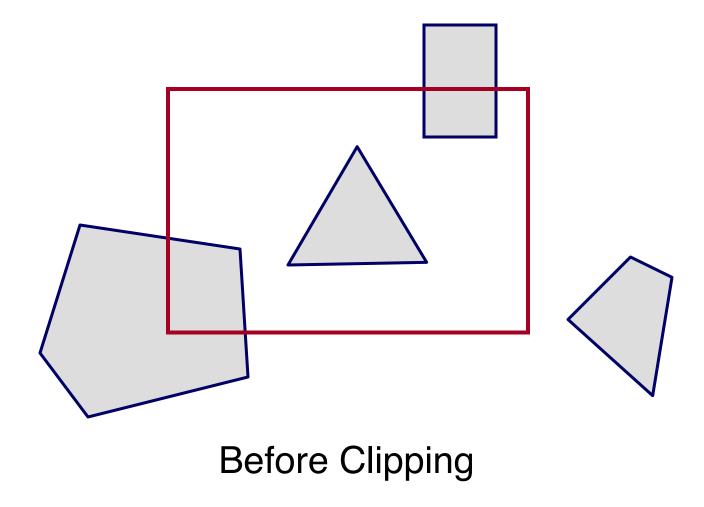
Clipping

- Avoid drawing parts of primitives outside window
 - Window defines part of scene being viewed
 - Must draw geometric primitives only inside window



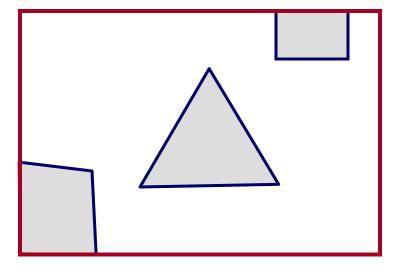
Polygon Clipping

Find the part of a polygon inside the clip window?



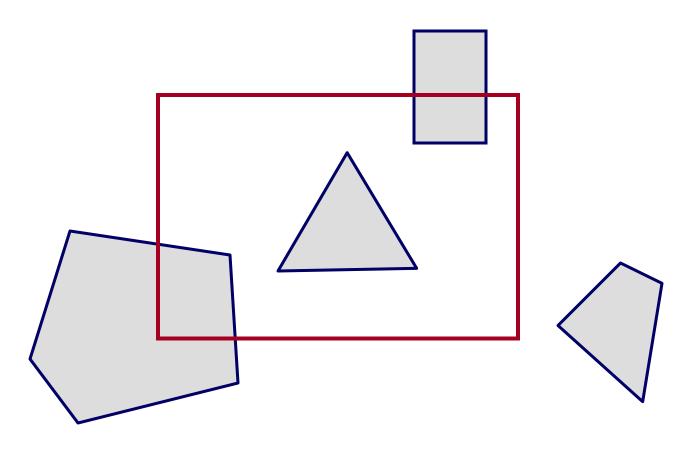
Polygon Clipping

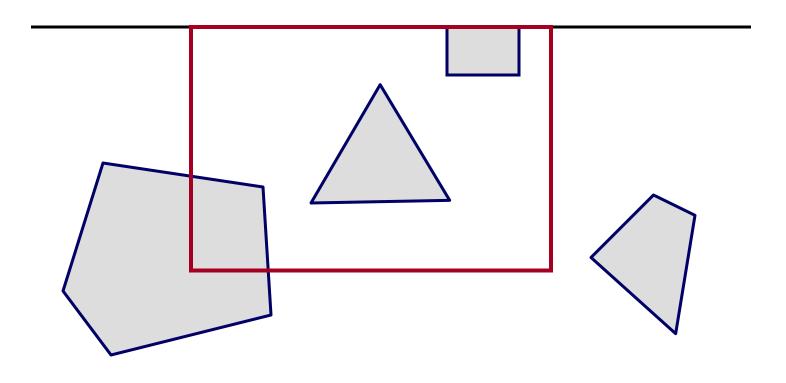
Find the part of a polygon inside the clip window?

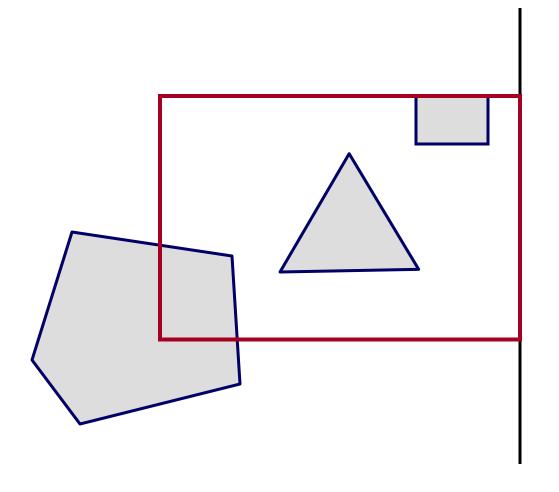


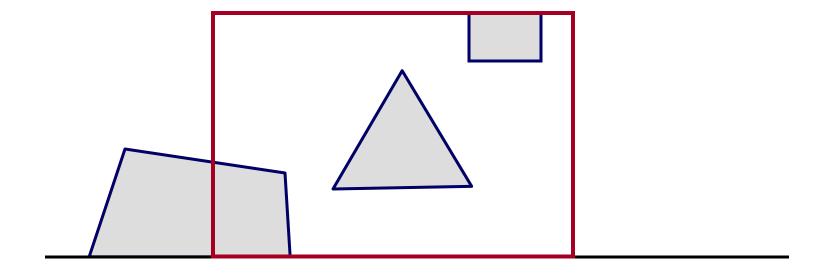
After Clipping

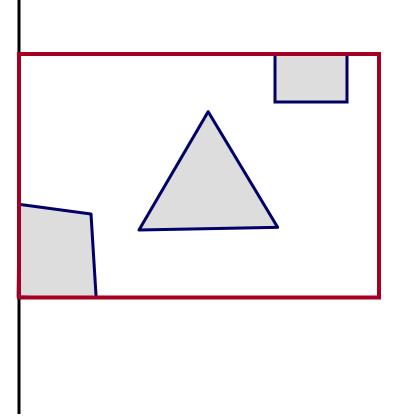
Clip to each window boundary one at a time (for convex polygons)



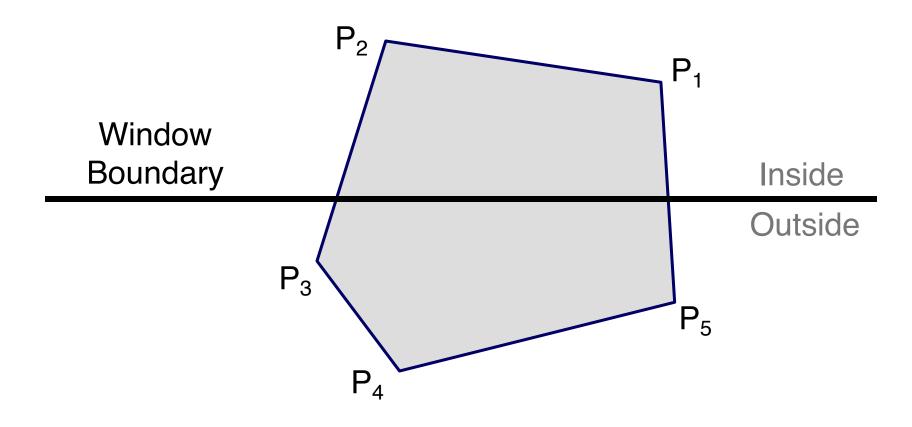




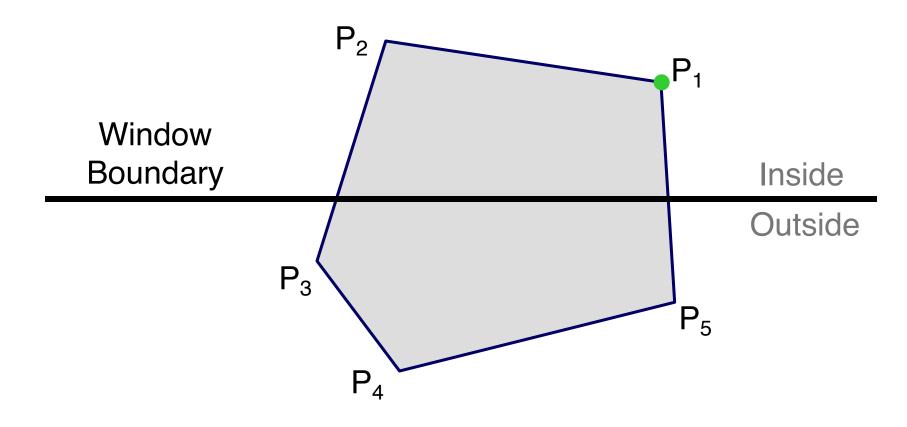




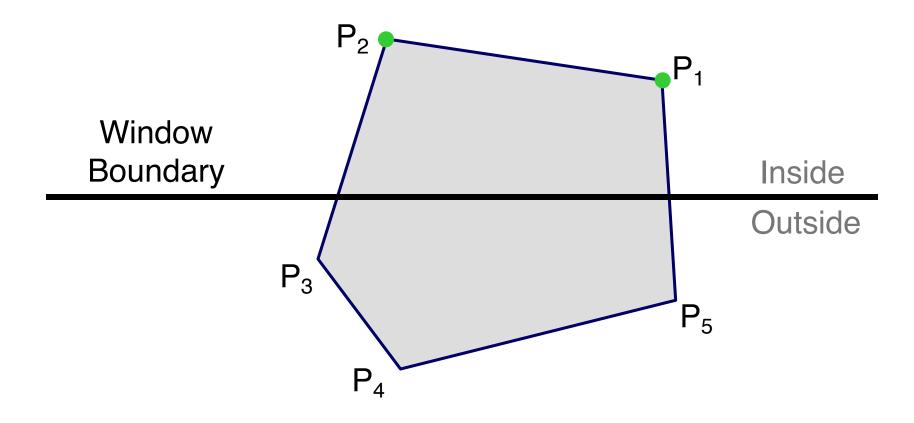
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



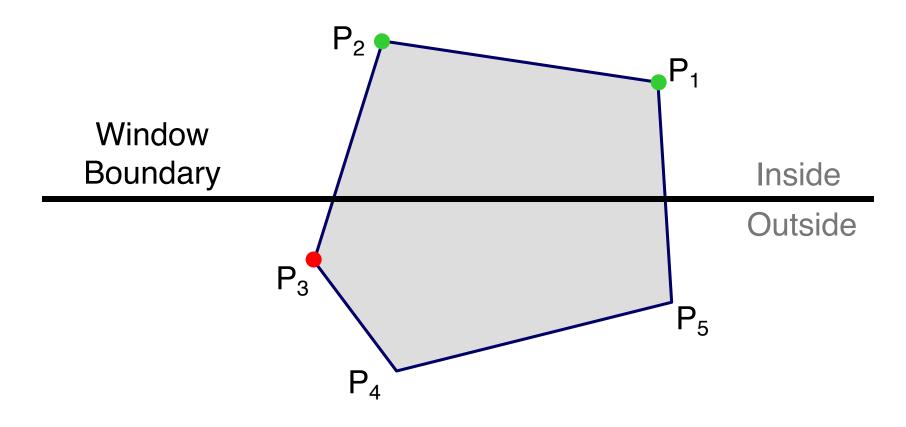
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



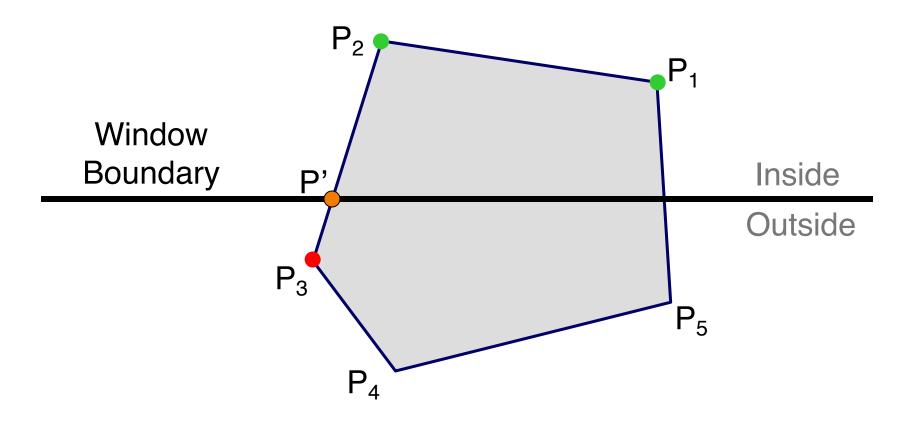
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



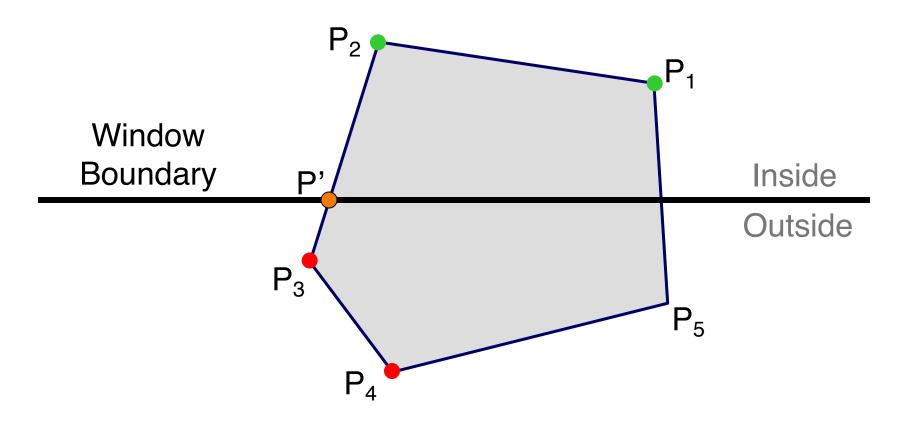
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



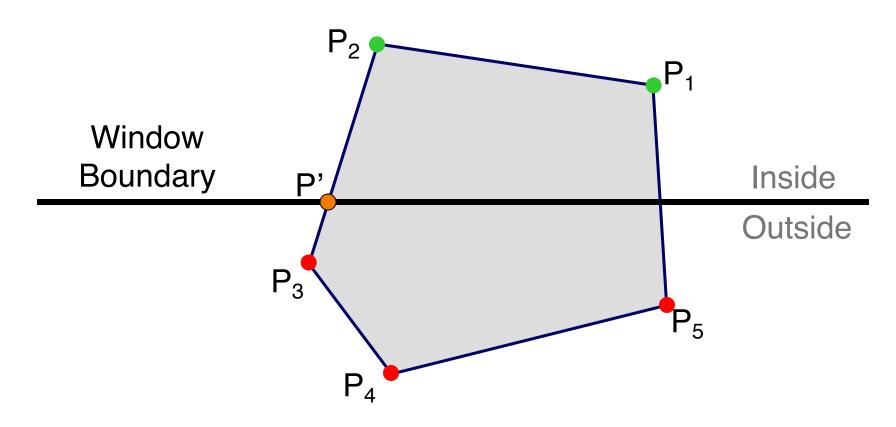
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



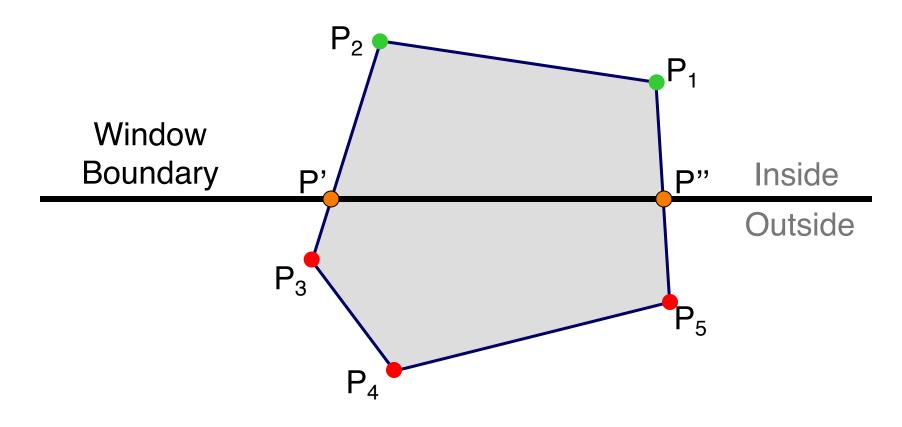
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



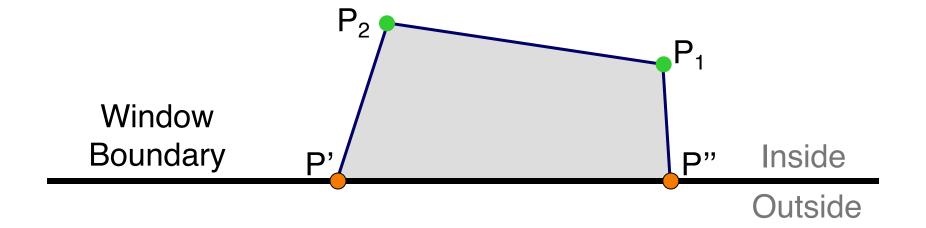
- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary

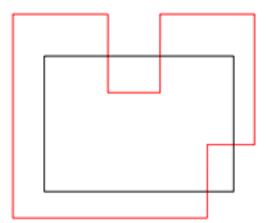


- Do inside test for each point in sequence
 - Insert new points when crossing window boundary
 - Remove points outside window boundary



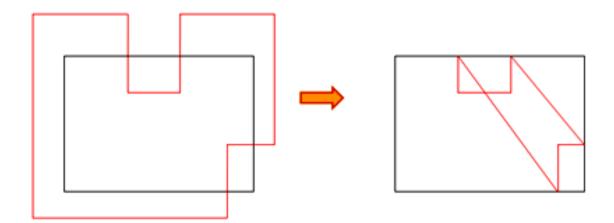
Sutherland Hodgeman Failure

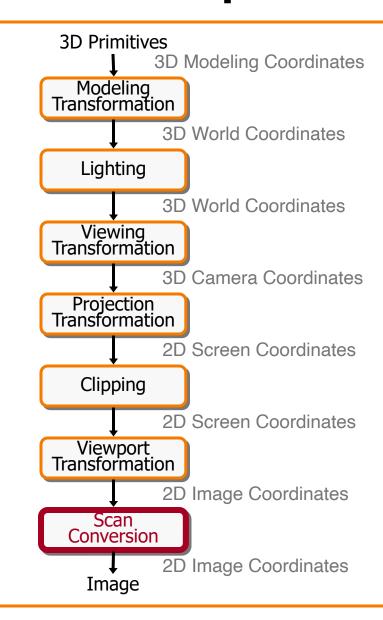
Concave Polygons

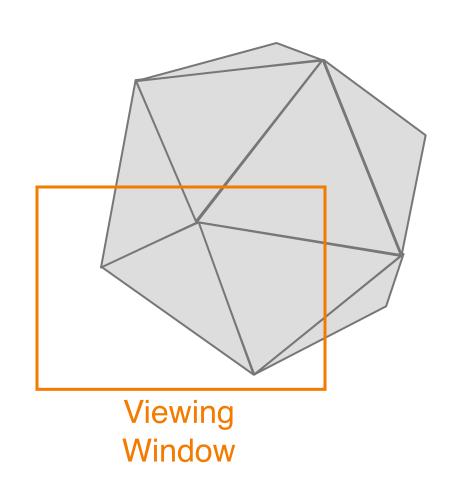


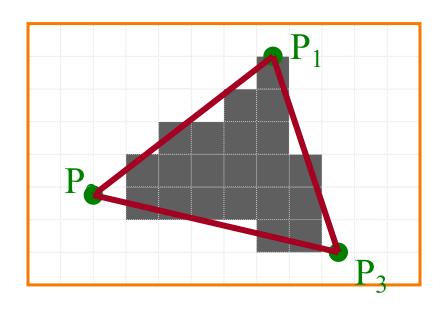
Sutherland Hodgeman Failure

Concave Polygons

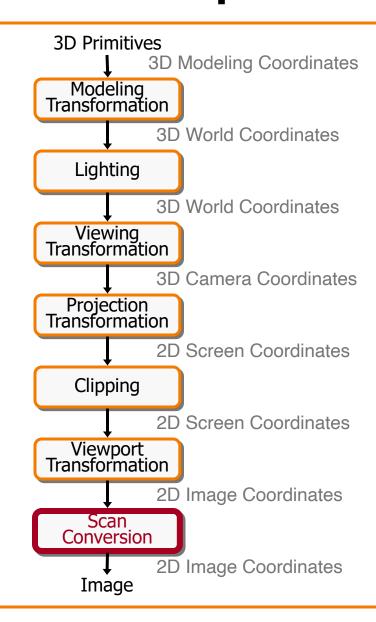


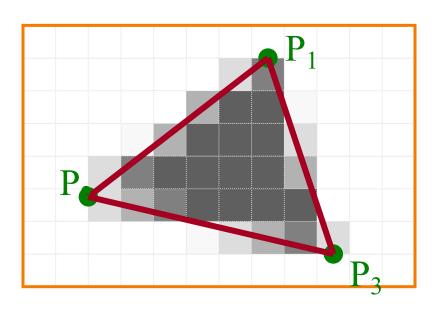






Standard (aliased)
Scan Conversion





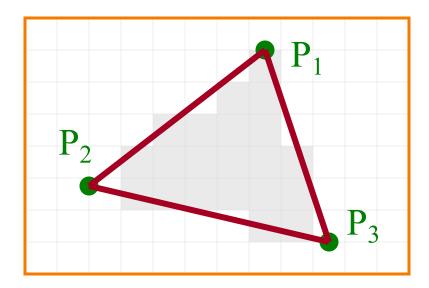
Antialiased Scan Conversion

Scan Conversion

Render an image of a geometric primitive by setting pixel colors

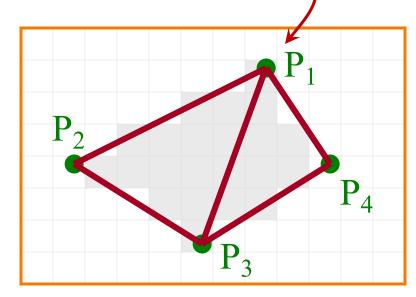
```
void SetPixel(int x, int y, Color rgba)
```

Example: Filling the inside of a triangle



Triangle Scan Conversion

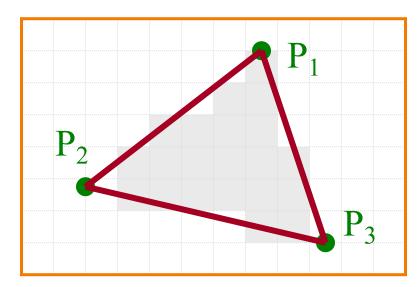
- Properties of a good algorithm
 - Symmetric
 - Straight edges
 - No cracks between adjacent primitives
 - (Antialiased edges)
 - FAST!



Simple Algorithm

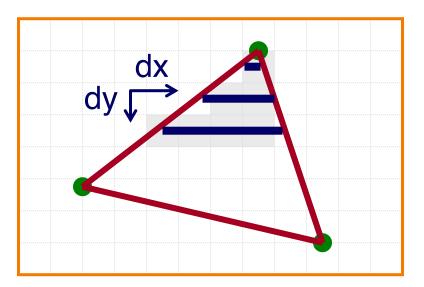
Color all pixels inside triangle

```
void ScanTriangle(Triangle T, Color rgba) {
    for each pixel P in bbox(T) {
        if (Inside(T, P))
            SetPixel(P.x, P.y, rgba);
    }
}
```



Triangle Sweep-Line Algorithm

- Take advantage of spatial coherence
 - Compute which pixels are inside using horizontal spans
 - Process horizontal spans in scan-line order
- Take advantage of edge linearity
 - Use edge slopes to update coordinates incrementally



Triangle Sweep-Line Algorithm

 dx_{R}

 dy_L

```
void ScanTriangle(Triangle T, Color rgba) {
  for each edge pair {
    initialize x<sub>L</sub>, x<sub>R</sub>;
    compute dx<sub>L</sub>/dy<sub>L</sub> and dx<sub>R</sub>/dy<sub>R</sub>;
    for each scanline at y
        for (int x = x<sub>L</sub>; x <= x<sub>R</sub>; x++)
            SetPixel(x, y, rgba);
    x<sub>L</sub> += dx<sub>L</sub>/dy<sub>L</sub>;
    x<sub>R</sub> += dx<sub>R</sub>/dy<sub>R</sub>;
  }
}
```

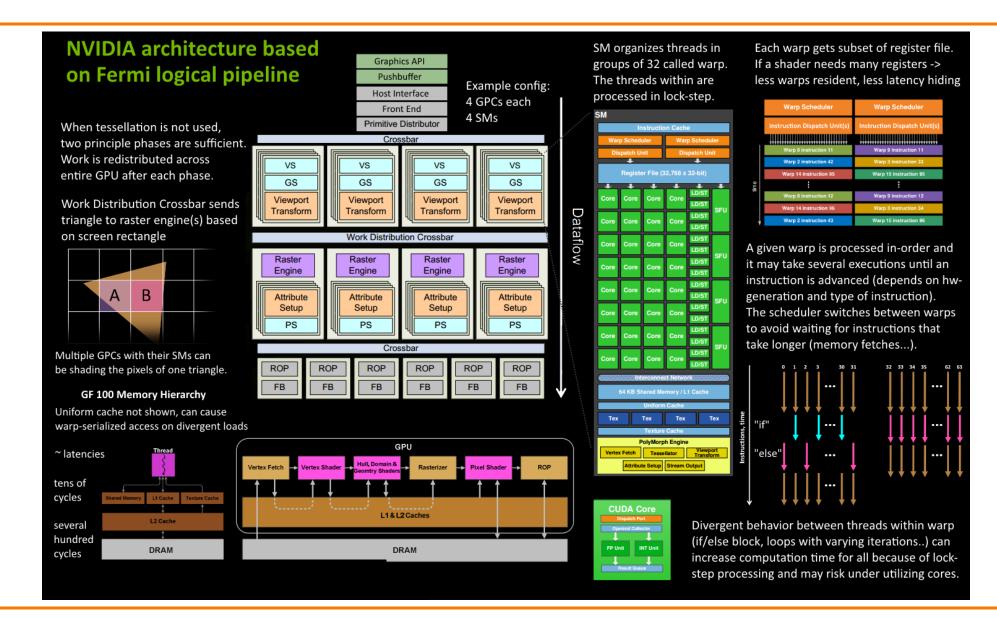
Triangle Sweep-Line Algorithm

 dx_{R}

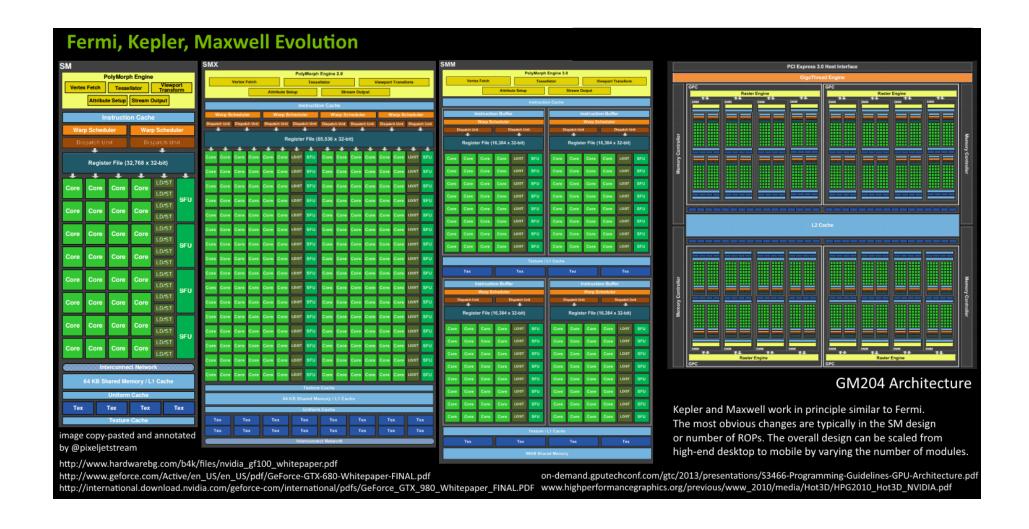
```
void ScanTriangle(Triangle T, Color rgba) {
  for each edge pair {
      initialize x_L, x_R;
      compute dx_L/dy_L and dx_R/dy_R;
      for each scanline at y
         for (int x = x_L; x \le x_R; x++)
             SetPixel(x, y rgba);
      x_L += dx_M dy_L;
      x_R += dx_R/dy_R;
                                         dy_L
Minimize computation
in inner loops
```

 dx_{I}

GPU Architecture



GPU Architecture



GPU Architecture

