The 3D Rasterization Pipeline
COS 426, Fall 2022

PRINCETON UNIVERSITY



-

3D Rendering Scenarios

« Offline

o One image generated with as much quality as possible
for a particular set of rendering parameters

» Take as much time as is needed (minutes)
» Targets photorealistism, movies, etc.

> Interactive

o Images generated dynamically, in fraction of a second (e.g., 1/30)
as user controls rendering parameters (e.g., camera)
» Achieve highest quality possible in given time

» Visualization, games, etc.




(

3D Polygon Rendering

- Many applications render 3D polygons with direct illumination
Valve




-
Ray Casting Revisited

* For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on illumination

(] ) o o

O i@ 0 O
(]
N
(e]
o
o

o
o
o
(o]
o
o




-
3D Polygon Rasterization

- We can render polygons faster if we take advantage of
spatial coherence

o o O i@ 0 O

o o o o (o o

o o o o o o

o o o (] ( (]
O X ]

o (o] o (o] o o




-

3D Polygon Rasterization

« How?




-

3D Polygon Rasterization

« How?




(

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Tk

Lighting

- This is a pipelined
Transformation sequence of operations

Projection to draw 3D primitives
Transformation into a 2D image

Clipping

Viewport
Transformation

Scan.
Conversion

i

Image




(

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives
|
Modeling
Transformation

Lighting

Vertex coordinates

Viewing
Transformation

Tl

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image




-

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Tramodeling. 1 Transform into 3D world coordinate system

Lighting

Viewing
Transformation

LI

Projection
Transformation

Clipping

Viewport,
Transformation

Scan_
Conversion

b

Image




(

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Tranodeling, ) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Viewing
Transformation

L0

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image




r
RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Tranodeling, ) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tranaemingon | Transform into 3D camera coordinate system

ik

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

\ Image

View Space

b




[

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation

L1113

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

(-1,1,1)




[

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Modeling.
Transformation

Lighting

Viewing
Transformation

ik

Projection
Transformation

Clipping

Viewport,
Transformation

Scan_
Conversion

b

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system

Clip primitives outside camera’s view e — throum away

near clipping

plane =

far clipping image plane
plane




[

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation

ik

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system

Clip primitives outside camera’s view ... in clip space

unit-cube
[ new vertices

L. A Clip.ping
=

4V
7

/ T

new vertex - ’/ l
Z




[

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation

ik

Projection
Transformation

Clipping

Viewport.
Transformation

Scan.
Conversion

i

Image

Transform into 3D world coordinate system

llluminate according to lighting and reflectance

unit-cube

-

Screen mapping
’

(x| ;)’|)

Transform into image coordinate system




[

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Tranodeling, ) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Trangemd.on | Transform into 3D camera coordinate system

ik

Trangedionn ] Transform into 2D camera coordinate system

Clipping

Viewport,
Transformation

[
ComNion Draw pixels (includes texturing, hidden surface, ...)

i

Image




[

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives

Tranodeling. 1 Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tranaformation Transform into 3D camera coordinate system

LI

Trangecioton | Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

Trareioborton | Transform into image coordinate system

e, Draw pixels (includes texturing, hidden surface, ...

i

Image




(

Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transformation

2D Screen Coordinates

Viewport.
Transformation

2D Image Coordinates

p'(X’,y’)

Transformations map points from
one coordinate system to another

3D Camera
Coordinates

3D Object
Coordinates

3D World
Coordinates




/

Viewing Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro]jection_
Transformation

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

p'(X’,y’)

Viewing Transformations




/

Review: Viewing Transformation

« Mapping from world to camera coordinates
o Eye position maps to origin

up back
right
Z
View
plane
Camera
y i

X
World




-

Review: Viewing Transformation

* Mapping from world to camera coordinates
o Eye position maps to origin
o Right vector maps to X axis

o Up vector maps to Y axis up back
o Back vector maps to Z axis right
Z
View
plane
Camera
y i

X
World




-

Review: Camera Coordinates

- Canonical coordinate system

o Convention is right-handed (looking down -z axis)
o Convenient for projection, clipping, etc.

Camera up vector

y 4 maps to Y axis
Camera right vector

Camera back vector maps to X axis

maps to Z axis X
(pointing out of page) 2> )’(




Finding the viewing transformation

- We have the camera (in world coordinates)

- We want T taking objects from world to camera
p-=Tp

- Trick: find T-1 taking objects in camera to world

pW _ T—lpC



Finding the Viewing Transformation

- Trick: map from camera coordinates to world
o Origin maps to eye position
o Z axis maps to Back vector
o Y axis maps to Up vector
o X axis maps to Right vector

x' R U B FE |x
y_|RU, B E Y
z' R U, B Lk |z
w| |R, U, B, E, |w]

« This matrix is T-' so we invertitto get T ... easy!




/

Viewing Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro]jection_
Transformation

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

p'(X’,y’)

Viewing Transformations




(

Projection

- General definition:
o Transform points in n-space to m-space (m<n)

* In computer graphics:
o Map 3D camera coordinates to 2D screen coordinates




-

Perspective vs. Parallel

 Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel

 Parallel projection
+ Good for exact measurements
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistic looking




-
Taxonomy of Projections

Planar geometric
projections
Parallel Perspective
Orthographic Oblique  One-point
Top Cabinet Two-point
(plan)
Front Axonometric  cayalier Three-point
elevation
Side
elevation - Other
Isometric
Other FVFHP Figure 6.10
\_ /




-
Taxonomy of Projections

Planar geometric
projections

Parallel

Orthographic Obligue ~ One-point

Perspective

Top Cabinet Two-point
(plan)
Front Axonometric  cavalier Three-point
elevation
Side
elevation - Other
Isometric

Other FVFHP Figure 6.10




-

Parallel Projection

- Center of projection is at infinity
o Direction of projection (DOP) same for all points

Angel Figure 5.4




-

Orthographic Projections

» DOP perpendicular to view plane

Top

Angel Figure 5.5




-

Parallel Projection Matrix

PERSPECTIVE
PROJECTION

AXONOMETRIC
PROJECTION
(ISOMETRIC)

OBLIQUE
PROJECTION
(CABINET)




-

Parallel Projection Matrix

« General parallel projection transformation:

»

e

. a
By 2) i L
.C: Xv
\\\\




-
Taxonomy of Projections

Planar geometric
projections

Parallel
Orthographic Obligue ~ One-point

Top Cabinet Two-point
(plan)
Front Axonometric  cavalier Three-point
elevation
Side
elevation - Other
Isometric

Other FVFHP Figure 6.10




-

Return to Perspective Projection

- Map points onto “view plane” along “projectors” emanating from

“center of projection” (COP)

Angel Figure 5.9




-

Perspective Projection

« Compute 2D coordinates from 3D coordinates with similar triangles

(X,y,2) -Z Y

<

4 DA S
View

What are the coordinates
: . Plane

of the point resulting from

projection of (x,y,z) onto Yy

the view plane?




-
Perspective Projection

« Compute 2D coordinates from 3D coordinates with similar triangles

(X,y,Z) -Z

<

| DA E—
(xD/z, yD/z) View

Plane




(

Perspective Projection Matrix

« 4x4 matrix representation?

x,=xD/z,

y.=y.D/z,

z =D

w, =1
x| 2 2 2 9%
Vol (7?7 7 7?7 2.
z |712 2 2 2|z
wl 1222 21

\_ /




/

Perspective Projection Matrix

« 4x4 matrix representation?
x,=xD/z, x, =x'/w x'=x,
yo=yDlz, — y;=y"iw Y=y,
z. =D z. =z'/w z'=1z,
w, =1 w=z /D
x| 22 9 o)X
Vol |2 7 7 7.
z | 1?7 ?2 ?7 2z
w122 2 2
\_ /




-

Perspective Projection Matrix

« 4x4 matrix representation?

x,=xD/z, x, =x'/w
yo=yDlz.  y,=yw
z. =D z. =z'/w
w, =1

X'=Xx,
y'=y.
z'=z,
w=z /D




-

Perspective Projection Matrix

* |n practice, want to compute a value related to depth to
include in z-buffer

x, =x,D/z, x, =x'/w x'=x,
y,=y.Dl/z, y,=y'Iw Y=y,
z. ==D/z, z. =z'/w z'=—1
w, =1




-

Perspective Projection View Volume

Frustum
View Volume

View
Plane

Reference
Point

H&B Figure 12.30




-

Perspective vs. Parallel

 Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel

 Parallel projection
+ Good for exact measurements
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistic looking




/

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transformation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(X’,y’)

Transformations
p(X,y,2)
l 3D Object Coordinates Transformations map points from
one coordinate system to another

3D Camera
Coordinates

3D Object
Coordinates

3D World
Coordinates




(

Viewport Transformation

» Transform 2D geometric primitives from screen coordinate system
(normalized device coordinates) to image coordinate system (pixels)

“Screen Image

Viewport

Window




(

Viewport Transformation

» Window-to-viewport mapping

Window Viewport

@) O
(WX,wy) (VX,Vy)

wyl vyl
WX | « » WX2 vX ]« > VX2

Screen Coordinates Image Coordinates

vl + (wx - wxl) * (vx2 - wvxl) / (wx2 - wxl);
vyl + (wy - wyl) * (vy2 - vyl) / (wy2 - wyl);




-

Summary of Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transformation

2D Screen Coordinates

Viewport.
Transformation

2D Image Coordinates

p'(X’,y’)

Modeling transformation

Viewing transformations

Viewport transformation




s
RaSterizatiOn Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation
2D Image Coordinates
Scan.
l Conversion l
2D Image Coordinates

K Image j




/

Clipping

- Avoid drawing parts of primitives outside window

o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Viewing
Window




-
Polygon Clipping

* Find the part of a polygon inside the clip window?

VAN

Before Clipping




-
Polygon Clipping

* Find the part of a polygon inside the clip window?

/\

After Clipping




-

Sutherland Hodgeman Clipping

» Clip to each window boundary one at a time (for convex polygons)

VAN




-

Sutherland Hodgeman Clipping

» Clip to each window boundary one at a time

VAN




-

Sutherland Hodgeman Clipping

» Clip to each window boundary one at a time

VAN




-

Sutherland Hodgeman Clipping

» Clip to each window boundary one at a time

A




-

Sutherland Hodgeman Clipping

» Clip to each window boundary one at a time

/\

-




Clipping to a Boundary

- Do inside test for each point in sequence

o Insert new points when crossing window boundary
o Remove points outside window boundary

P>

Window
Boundary Inside

Outside




Clipping to a Boundary

- Do inside test for each point in sequence

o Insert new points when crossing window boundary
o Remove points outside window boundary

P>

Window
Boundary Inside

Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

P>

Window
Boundary

o Insert new points when crossing window boundary

Inside
Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

P>

Window
Boundary

o Insert new points when crossing window boundary

Inside
Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

Window
Boundary P’

o Insert new points when crossing window boundary

Inside
Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

Window
Boundary P’

o Insert new points when crossing window boundary

Inside
Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

Window
Boundary P’

o Insert new points when crossing window boundary

Inside
Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

Window
Boundary P’

o Insert new points when crossing window boundary

Inside
Outside




-

Clipping to a Boundary

- Do inside test for each point in sequence

o Remove points outside window boundary

Window
Boundary P’

o Insert new points when crossing window boundary

Outside




-

Sutherland Hodgeman Failure

- Concave Polygons




-

Sutherland Hodgeman Failure

- Concave Polygons




-

RaSterizatiOn Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport

Transformation

Viewing
Window

2D Image Coordinates

can
Conversion

2D Image Coordinates

Image




r
RaSterizatiOn Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates
Clipping

2D Screen Coordinates

Viewport
Transformation

Standard (aliased)
2D Image Coordinates Scan ConverSiOn

can

onversion
2D Image Coordinates

\ Image j




r
RaSterizatiOn Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates
Clipping

2D Screen Coordinates

Antialiased
2D Image Coordinates Scan Conversion

Viewport
Transformation

can

onversion
2D Image Coordinates

\ Image j




-

Scan Conversion

* Render an image of a geometric primitive by setting pixel colors

| void SetPixel (int x, int y, Color rgba) I

- Example: Filling the inside of a triangle

P




(

Triangle Scan Conversion

* Properties of a good algorithm
o Symmetric
o Straight edges
o No cracks between adjacent primitives >

o (Antialiased edges)
o FAST!

¥

P




-

Simple Algorithm

« Color al

pixels inside triangle

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P in bbox(T) {
if (Inside (T, P))
SetPixel (P.x, P.y, rgba);

P




-

Triangle Sweep-Line Algorithm

- Take advantage of spatial coherence

o Process horizontal spans in scan-line order

- Take advantage of edge linearity

o Compute which pixels are inside using horizontal spans

o Use edge slopes to update coordinates incrementally

dx
dy [,




-

Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for each edge pair {
initialize x;, Xy,
compute dx;/dy; and dxi/dyg;
for each scanline at y
for (int x = x;; x <= xg;, x++)
SetPixel (x, y, rgba);
x, += dx./dy;;

X += dxi/dyg;




-
Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for each edge pair {
initialize x;, Xy,
compute dx;/dy; and dx;/dyg;
for each scanline at y
for (int x = x;; x <= x;;, x++)
SetPixel (x,

Minimize computation
in inner loops




Architecture

DJIA 3 = e pase organize ead a arp ge bset of register file
Graphics API groups o alled warp a shader need 2 egiste
U S D§ dl PIPE S Pushbuffer o ead are o arps reside ecs |ate dine

Host Interface

A > A proce ed O ep
Front End c
o essellatio 0 ed Primitive Distributor
oD nle phases are o Crossbar 1 | |
O ed 9 eq a O VS VS
g e P d er ed pnase
GS | s
0 D b 0 ossbar send Viewport Viewport Viewport Viewport
Transform Transform Transform Transform w,
angle to raster engine pased 0 —
0 een rectangle Work Distribution Crossbar Q
O A gIve arp processed order and
Raster Raster Raster Raster o cove ave 0
Engine Engine Engine Engine LorsT| ay e ° °
O davad ed (aepena O
Attribute Attribute Attribute Attribute generation and pe o 0
Setup Setup Setup Setup a edule es betwee arp
PS ps |IJUi[ Ps PS 0 avoid waiting fo 5 3
aKe IoNnge e O e -
ple GP . a
pe ading e pixels or one ang ¥ ’
00 O
O d e O O d
arp-serialized acce on diverge
PolyMorph Engine
ate o GPU [ vertex Feten | [ Tessenator | [ erpor | else
o 0O I
FiSE2Caches o
| opamscuc Divergent behavior betwee ead arp
area e e DIO oop a & eratio d
A DRAM DRAM m m Y



-
GPU Architecture

PCI Express 3.0 Host Interface
PolyMorph Engine 2.0 PolyMorph Engine 3.0
| [ Tessottator ] [ | Tessetinice | [ vewport tramtorm

Aftrute Secup. ] [

Dispeich Urit  Disgetoh Ut Dlsgatch Unit  Oispetch Unit  Dispaich Unk  Dispaich Unit
- - -+ Déspatch Urit Dinpatcn Crcsancs Chnpatch Ui
- -
Rogister File (65,536 x 32-bit)
Register File (16.384 x 32-0it) Register File (16,384 x 32-bit)
4 4 2 2 a2 3

Com| Com| osT SFU  Com Come Cors

.
-

Core. Core Lot

Register File (32,768 x 32-bit)

Memery Controlier

[Cors| Lot Core Loer

-

Core
ks s kS R
LO/ST B e Core G oo
LO/ST Core Core
[Cors| Losr
LosST

Core. Core.

LDsST -
Core Core
LO/ST B st
Core Core

LO/ST

RS

Core 1037
LOsSY
LO/ST Cors LosT

LOsSY Core (03T

LOsST B e

5 Ksowony

e [R——— [ Cusen st [
- - o
| s s -

LOsSY

Memory Controller

Register File (16,384 x 32-bit) Register File (16.384 x 32-bit)
- Core

LO/ST
Core Lot

LOsST Core

Lot

LO/ST

S0 NS0 NS RN NS SN RSN RSN
S0 080 N8 N80 N8 8T 08 8
S0 D50 NS SN RSN SN NS 08

Core.

LOsSY

3
Core.
Core.
Core
Core
Core
Core
Core
Core
Core
Core.
Core
Core
Core
Core
Core Core
Core.

INEEEREEEEEEEENE N

&
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core.
Core
Core

3
Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core
Core Core

A rrrrrrrrrrrrr
A rrrrrrrrrrrrr
Arrrrrrrrrrrrer

Core

GM?204 Architecture

Iﬁ

Tex Tex Tex

111111

Kepler and Maxwell work in principle similar to Fermi.
ey b N = = The most obvious changes are typically in the SM design

image copy-pasted and annotated — or number of ROPs. The overall design can be scaled f

by @pixeljetstream high-end desktop to mobile by varying the number of modules.
http://www.hardwarebg.com/bak/files/nvidia_gf100_whitepaper.pdf

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980 aper_FINAL.PDF www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_NVIDIA.pdf




GPU Architecture

NVIDIA architecture based

on Fermi logical pipeline [ruiurc R
4 GPCs each
Front End
nVIDIA

o — 4 SMs : ) s/
When tessellation is not used, el i 7

two principle phases are sufficient. il
Work is redistributed across i The color-coded renderings illustrate the work
distribution across the hardware (not frame-coherent).

entire GPU after each phase.

Viewport Viewport Viewport Viewport
Transform Transform Transform Transform

Work Distribution Crossbar sends
triangle to raster engine(s) based
on screen rectangle Work Distribution Crossbar

MO|jeleQ

Attribute Attribute Attribute Attribute Colored by vertex g| SMID
Setup Setup Setup Setup -

PS PS PS PS

Crossbar

Multiple GPCs with their SMs can
be shading the pixels of one triangle. | ROP | | ROP | | ROP | | ROP | | ROP | | ROP |
) [ rB |§ 8 |f[ F8 [} FB |Q] FB |}[ FB |
GF 100 Memory Hierarchy

Uniform cache not shown, can cause
warp-serialized access on divergent loads

/
Thread

. GPU
~ latencies
tens of I

Colored by fragment gl_SMID

cycles

several
hundred
ooes  TIELIN

Colored by fragment gl_WarpID




