
Lighting and Reflectance
COS 426, Fall 2022

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);
image->SetPixel(i, j, radiance);

}
}
return image;

}

Ray Casting

Without Illumination

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = ComputeIntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

} With Illumination

Illumination
• How do we compute radiance for a sample ray

once we know what it hits?

Angel Figure 6.2

ComputeRadiance(scene, ray, intersection)

Goal
• Must derive computer models for ...
! Emission at light sources
! Scattering at surfaces
! Reception at the camera

• Desirable features …
! Concise
! Efficient to compute
! “Accurate”

Overview
• Direct Illumination
! Emission at light sources
! Scattering at surfaces

• Global illumination
! Shadows
! Refractions
! Inter-object reflections

Direct Illumination

Emission at Light Sources
• IL(x,y,z,q,f,l) ...
! describes the intensity of energy,
! leaving a light source, …
! arriving at location(x,y,z), ...
! in direction (q,f), ...
! with wavelength l (x,y,z)

Light

Empirical Models
• Ideally measure irradiant energy for “all” situations
! Too much storage
! Difficult in practice

x,y,z,q,f,l

OpenGL Light Source Models
• Simple mathematical models:
! Point light
! Directional light
! Spot light

Point Light Source
• Models omni-directional point source
! intensity (I0),
! position (px, py, pz),

d

Light

(px, py, pz)

Point Light Source
• Models omni-directional point source
! intensity (I0),
! position (px, py, pz),
! coefficients (ca, la, qa) for attenuation with distance (d)

2
0I

dqdlc
I

aaa
L ++
=

d

Light

(px, py, pz)

Point Light Source

• Physically-based: “inverse square law”
! ca = la = 0

• Use ca and la ¹ 0 for non-physical effects
! Better control of the look (artistic)

2
0I

dqdlc
I

aaa
L ++
=

Directional Light Source
• Models point light source at infinity
! intensity (I0),
! direction (dx,dy,dz)

0IIL =

(dx, dy, dz)

No attenuation
with distance

Spot Light Source
• Models point light source with direction
! intensity (I0),
! position (px, py, pz),
! direction (dx, dy, dz)
! attenuation with distance

d

(px, py, pz)
L Θ = cos-1(L × D)

Spot Light Source
• Models point light source with direction
! intensity (I0),
! position (px, py, pz),
! direction (dx, dy, dz)
! attenuation with distance
! falloff (sd), and cutoff (sc)

𝐼! = #
I"(cos Θ)#$

𝑐% + 𝑙%𝑑 + 𝑞%𝑑&
if Θ ≤ 𝑠𝑐,

0 otherwise

d

(px, py, pz)
D

L Θ = cos-1(L × D)

sc

Power of Dot Product
• cos 𝜃 ! = 𝑎 (𝑏 !

• Common form for “peaky” functions

• “Peakiness” depends on n
• We’ll see it later as well…

𝐼! = #
I"(cos Θ)#$

𝑐% + 𝑙%𝑑 + 𝑞%𝑑&
if Θ ≤ 𝑠𝑐,

0 otherwise

Overview
• Direct Illumination
! Emission at light sources
! Scattering at surfaces

• Global illumination
! Shadows
! Refractions
! Inter-object reflections

Direct Illumination

Scattering at Surfaces
Bidirectional Reflectance Distribution Function fr(qi,fi,qo,fo,l) ...
! describes the aggregate fraction of incident energy,

Surface

Scattering at Surfaces
Bidirectional Reflectance Distribution Function fr(qi,fi,qo,fo,l) ...
! describes the aggregate fraction of incident energy,
! arriving from direction (qi,fi), ...
! leaving in direction (qo,fo), …

Surface

(qi,fi)

(qo,fo)

Scattering at Surfaces
Bidirectional Reflectance Distribution Function fr(qi,fi,qo,fo,l) ...
! describes the aggregate fraction of incident energy,
! arriving from direction (qi,fi), ...
! leaving in direction (qo,fo), …
! with wavelength l

Surface

(qi,fi)

l

(qo,fo)

Empirical Models
• Ideally measure BRDF for “all” combinations of angles: qi,fi,qo,fo
! Difficult in practice
! Too much storage

Parametric Models
• Approximate BRDF with simple parametric function that is

fast to compute
! Phong [75]
! Blinn-Phong [77]
! Cook-Torrance [81]
! He et al. [91]
! Ward [92]
! Lafortune et al. [97]
! Ashikhmin et al. [00]
! etc.

Lafortune [97]

Cook-Torrance [81]

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +

Surface

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +

Surface

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +

Surface

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

Based on Phong
illumination model
Based on model

proposed by Phong

Diffuse Reflection
• Assume surface reflects equally in all directions
! Examples: chalk, clay

Surface

Diffuse Reflection
• What is brightness of surface?
! Depends on angle of incident light

Surface

q

Diffuse Reflection
• What is brightness of surface?
! Depends on angle of incident light

Surface

dL

Q= cosdAdL

dA

q

Diffuse Reflection
• What is brightness of surface?
! Depends on angle of incident light

Surface

dL

Q= cosdAdL

dA

q

Diffuse Reflection
• Lambertian model
! cosine law (dot product)

𝐼! = (𝑁 ⋅ 𝐿)𝐼"

Surface

N
L

q

Diffuse Reflection
• Lambertian model
! cosine law (dot product)

𝐼! = 𝐾!(𝑁 ⋅ 𝐿)𝐼"

Surface

N
L

q

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

Specular Reflection
• Reflection is strongest near mirror angle
! Examples: mirrors, metals

N

LR qq

Specular Reflection
How much light is seen?
Depends on:
! angle of incident light q

N

LR

V

Viewer
qq

Specular Reflection
How much light is seen?
Depends on:
! angle of incident light q
! angle to viewer a

N

LR

V

Viewer
a

qq

Specular Reflection
• Phong Model
! (cos a)n

L
n

SS IRVKI)(×=

N

LR

V

Viewer
a

qq

This is a (vaguely physically-motivated) hack!

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

Emission
Represents light emanating directly from surface
! Note: does not “automatically” act as light source!

Does not affect other surfaces in scene!

Emission ¹ 0

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

Ambient Term

This is a hack (avoids complexity of global illumination)!

Represents reflection of all indirect illumination

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

OpenGL Reflectance Model
• Simple analytic model:
! diffuse reflection +
! specular reflection +
! emission +
! “ambient”

Surface

OpenGL Reflectance Model
• Good model for plastic surfaces, …

Direct Illumination Calculation
• Single light source:

L
n

SLDALAE IRVKILNKIKII)()(×+×++=

N

LR

V

Viewer
a

qq

Direct Illumination Calculation
• Multiple light sources:

() L
L

n
iSiDALAE IRVKLNKIKII å ×+×++=)()(

N

L2

V

Viewer L1 Note:
all of the
K and I

are RGB
colors

Overview
• Direct Illumination
! Emission at light sources
! Scattering at surfaces

• Global illumination
! Shadows
! Transmissions
! Inter-object reflections

Global Illumination

Global Illumination

Greg Ward

Ray Casting (last lecture)
• Trace primary rays from camera
! Direct illumination from unblocked lights only

Ray Casting (last lecture)
• Trace primary rays from camera
! Direct illumination from unblocked lights only

() L
L

n
iSiDALAE IRVKLNKIKII å ×+×++=)()(

Shadows
• Shadow term tells if light sources are blocked
! Cast ray towards each light source
! SL = 0 if ray is blocked, SL = 1 otherwise

Shadow
Term

() LL
L

n
iSiDALAE ISRVKLNKIKII å ×+×++=)()(

Recursive Ray Tracing
• Also trace secondary rays from hit surfaces
! Mirror reflection and transparency

() LL
L

n
iSiDALAE ISRVKLNKIKII å ×+×++=)()(

Recursive Ray Tracing
• Also trace secondary rays from hit surfaces
! Mirror reflection and transparency

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++×+×++= å)()(

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++×+×++= å)()(

Mirror reflections
• Trace secondary ray in mirror direction
! Evaluate radiance along secondary ray and

include it into illumination model

Radiance
for mirror

reflection ray

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++×+×++= å)()(

Transparency
• Trace secondary ray in direction of refraction
! Evaluate radiance along secondary ray and

include it into illumination model

Radiance for
refraction ray

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++×+×++= å)()(

Transparency
• Transparency coefficient is fraction transmitted
! KT = 1 for translucent object, KT = 0 for opaque
! 0 < KT < 1 for object that is semi-translucent

Transparency
Coefficient

Refractive Transparency
• For solid objects, apply Snell’s law:

N

L
Qi

T
Qr

hr

hi

LNT
r

i
ri

r

i

h
h

h
h

-Q-Q=)coscos(

iirr Q=Q sinsin hh

Refractive Transparency
• For thin surfaces, can ignore change in direction
! Assume light travels straight through surface

N

L
Qi

T
Qr

hr

hi

Qi
T LT -@

Recursive Ray Tracing
• Ray tree represents illumination computation

Ray traced through scene Ray tree

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++×+×++= å)()(

Recursive Ray Tracing
• Ray tree represents illumination computation

Ray traced through scene Ray tree

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++×+×++= å)()(

Recursive Ray Tracing
• ComputeRadiance is called recursively

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection& hit)
{

R3Ray specular_ray = SpecularRay(ray, hit);
R3Ray refractive_ray = RefractiveRay(ray, hit);
R3Rgb radiance = Phong(scene, ray, hit) +

Ks * ComputeRadiance(scene, specular_ray) +
Kt * ComputeRadiance(scene, refractive_ray);

return radiance;
}

Example

Turner Whitted, 1980

Summary
• Ray casting (direct Illumination)
! Usually use simple analytic approximations for

light source emission and surface reflectance

• Recursive ray tracing (global illumination)
! Incorporate shadows, mirror reflections,

and pure refractions

More on global illumination after next week!

All of this is an approximation
so that it is practical to compute

