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Syllabus
I. Image processing
II. Modeling

III. Rendering
IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

Modeling
(Dennis Zorin, CalTech) Animation

(Angel, Plate 1)

Rendering
(Michael Bostock, CS426, Fall99)



What is 3D Rendering?
• Topics in computer graphics
! Imaging = representing 2D images
! Modeling = representing 3D objects
! Rendering = constructing 2D images from 3D models
! Animation = simulating changes over time



Rendering: Inspiration

4

Source: (Project Sol Part 2) https://www.youtube.com/watch?v=pNmhJx8yPLk



What is 3D Rendering?
• Construct image from 3D model

Rendering



Interactive 3D Rendering
• Images generated in fraction of a second (e.g., 1/30)

as user controls rendering parameters (e.g., camera)
! Achieve highest quality possible in given time
! Useful for visualization, games, etc.



Offline 3D Rendering
• One image generated with as much quality as possible

for a particular set of rendering parameters
! Take as much time as is needed (minutes, hours…)
! Photorealism: movies, cut scenes, etc.

Avatar



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?

Pixar



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determinaton
! Lights
! Reflectance
! Shadows
! Indirect illumination
! Sampling
! etc.



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determination
! Lights
! Reflectance
! Shadows
! Indirect illumination
! Sampling
! etc.



Camera Models
• The most common model is pin-hole camera 
! Light rays arrive along paths toward focal point
! No lens effects (e.g., everything in focus)

Other models consider ...
Depth of field
Motion blur
Lens distortion

View plane

Eye position
(focal point)



Camera Parameters
• What are the parameters of a camera?



Pinhole Camera Parameters
• Position
! Eye position (px, py, pz)

• Orientation
! View direction (dx, dy, dz) or “look at” point
! Up direction (ux, uy, uz)

• Coverage
! Field of view (fovx, fovy)

• Resolution
! x and y

right

back

Up direction

Eye 
Position

View direction

“Look at”
Point



View Plane

View plane

Eye position



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determination
! Lights
! Reflectance
! Shadows
! Indirect illumination
! Sampling
! etc.



Visible Surface Determination
• The color of each pixel on the view plane depends on the radiance 

(“amount of light”) emanating from visible surfaces

How find visible surfaces?



ACM Comput. Surv. 6, 1 (March 1974)



In Practice… Brute Force

• Ray tracing
! for each pixel: determine closest object hit by ray
! compute color

• Rasterization
! for each object: enumerate pixels it hits
! keep track of color, depth of current-best surface at each pixel



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determination
! Lights
! Reflectance
! Shadows
! Indirect illumination
! Sampling
! etc.



Lighting Simulation
• Lighting parameters
! Light source emission
! Surface reflectance
! Atmospheric attenuation
! Camera response

N
N

Camera

Surface

Light
Source



Lighting Simulation

N

L2

V

Viewer L1



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determinaton
! Lights
! Reflectance
! Shadows
! Indirect illumination
! Sampling
! etc.



Shadows
• Occlusions from light sources



Shadows
• Occlusions from light sources
! Soft shadows with area light source

Moller



Shadows

Herf



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determinaton
! Lights
! Reflectance
! Shadows
! Indirect illumination
! Sampling
! etc.



Path Types



Path Types

Jensen

direct diffuse + indirect specular and transmission
Henrik Wann Jensen

LD(S|T)*E



Path Types

Jensen

+ soft shadows
Henrik Wann Jensen

LD(S|T)*E



Path Types

Jensen

+ caustics
Henrik Wann Jensen

LD(S|T)*E +
L(S|T)*DE



Path Types

Jensen

+ indirect diffuse illumination
Henrik Wann Jensen

L(D|S|T)*E 



Rendering Equation

32

BRDFIncident radianceOutgoing radiance



3D Rendering Issues
• What issues must be addressed by a 3D rendering system?
! Camera
! Visible surface determinaton
! Shadows
! Reflectance
! Indirect illumination
! Sampling
! etc.



Sampling
• Scene can be sampled with any ray
! Rendering is a problem in sampling and reconstruction



Rendering Method I:
Ray Casting



Ray Casting
• Primitive operation for one class of renderers:
! Given a ray (origin, direction)
! Find point of first intersection with scene

• May return:
! Whether intersection occurs
! Point of intersection (x,y,z)
! Parameters of intersection on object

• Used for:
! Camera (primary) rays: backwards ray tracing
! Accumulate brightness from lights: forwards ray tracing
! Shadow rays
! Indirect illumination (path tracing)



Traditional (Backwards) Ray Tracing
• The color of each pixel on the view plane depends on the radiance 

emanating along rays from visible surfaces in scene

Camera

Light
Surfaces



Scene
• Scene has:
! Scene graph with surface primitives
! Set of lights
! Camera

Camera

Light
Surfaces

struct R3Scene {
R3Node *root;
vector<R3Light *> lights;
R3Camera camera;
R3Box bbox;
R3Rgb background;
R3Rgb ambient;

};



Scene Graph
• Scene graph is hierarchy of nodes, each with:
! Bounding box (in node’s coordinate system)
! Transformation (4x4 matrix)
! Shape (mesh, sphere, … or null)
! Material (more on this later)

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]



• Simple scene graph implementation:

Scene Graph

struct R3Node {
struct R3Node *parent;
vector<struct R3Node *> children;
R3Shape *shape;
R3Matrix transformation;
R3Material *material;
R3Box bbox;

};

struct R3Shape {
R3ShapeType type;
R3Box *box;
R3Sphere *sphere;
R3Cylinder *cylinder;
R3Cone *cone;
R3Mesh *mesh;

};



Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 

image->SetPixel(i, j, radiance);
}

}
return image;

}



Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

image->SetPixel(i, j, radiance);
}

}
return image;

}



Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene,  &ray);
image->SetPixel(i, j, radiance);

}
}
return image;

}



Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene,  &ray);
image->SetPixel(i, j, radiance);

}
}
return image;

}



Constructing Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tV



Constructing Ray Through a Pixel
• 2D Example

d
Q towardsP0

right

right = towards × up

Q = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards – d*tan(Q)*right
P2 = P0 + d*towards + d*tan(Q)*right

P1

P2

2*d*tan(Q
)

P

P  = P1 + ((i + 0.5) / width) * (P2 - P1)
V = (P - P0) / ||P - P0 ||
(d cancels out…)

V

Ray: P = P0 + tV



Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene,  &ray);
image->SetPixel(i, j, radiance);

}
}
return image;

}



Ray Casting
• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = ComputeIntersection(scene, ray);

}

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

};
Camera

Light
Surfaces



Ray Casting
• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = ComputeIntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

};
Camera

Light
Surfaces



Ray Casting
• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = ComputeIntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

};
Camera

Light
Surfaces



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
! BSP trees



Ray Intersection
• Ray Intersection

ØSphere
! Triangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
! BSP trees



Ray-Sphere Intersection

P0

V

O

P

r

P’



Ray-Sphere Intersection

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

P0

V

O

P

r

P’



Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0 

P0

V

O

P
r

P’

Algebraic Method

P = P0 + tV



Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0 

Solve quadratic equation: 
at2 + bt + c = 0

where:
a = V2

b = 2 V • (P0 - O) 
c = |P0 - C|2 - r 2 = 0 

P0

V

O

P
r

P’

Algebraic Method

P = P0 + tV



Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

L = O - P0

tca = L • V
if (tca < 0) return INF

P0
V

O

P

r

P’

r

tca

L

Geometric Method

P = P0 + tV



Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

L = O - P0

tca = L • V
if (tca < 0) return INF

d2 = L • L - tca
2

if (d2 > r2) return INF P0
V

O

P

r

P’

rd

tca

L

Geometric Method

P = P0 + tV



Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

L = O - P0

tca = L • V
if (tca < 0) return INF

d2 = L • L - tca
2

if (d2 > r2) return INF

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0
V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV



Ray-Sphere Intersection

P0

V

O
P r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection 
for lighting calculations (next lecture)



Ray Intersection
• Ray Intersection
! Sphere
ØTriangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
! BSP trees



Ray-Triangle Intersection

P

P0

V



Ray-Triangle Intersection
• First, intersect ray with plane
• Then, check if intersection point is inside triangle

P

P0

V



Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

N

P

P0

V

Algebraic Method



Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

Solution: 
t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV



Ray-Triangle Intersection I
• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 – P0
V2 = T2 – P0
N1 = V2 x V1
Normalize N1
Plane p(P0, N1)

end
return TRUE



Ray-Triangle Intersection I
• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 – P0
V2 = T2 – P0
N1 = V2 x V1
Normalize N1
Plane p(P0, N1)
if (SignedDistance(p, P-P0) < 0)

return FALSE
end
return TRUE



Ray-Triangle Intersection II
• Check if point is inside triangle algebraically

P
T1

T2

T3

V2V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1 (but not V1 x V2) 
if (V • N1 < 0)

return FALSE
end
return TRUE

N1

P0

V



Ray-Triangle Intersection II
• Check if point is inside triangle algebraically

P

T1

T2

T3

V2
V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1
if (V • N1 < 0)

return FALSE
end
return TRUE

N1P0

V



Ray-Triangle Intersection III
• Check if point is inside triangle parametrically

P

P0

V

a

b

T1

T2

T3

1-a-b

“Barycentric coordinates” a, b, g:
P = aT3 + bT2 + gT1

where a + b + g = 1



Ray-Triangle Intersection III
• Check if point is inside triangle parametrically

P

P0

“Barycentric coordinates” a, b, g:
P = aT3 + bT2 + gT1

where a + b + g = 1

a = Area(PT1T2) / Area(T1T2T3)
b = Area(PT3T1) / Area(T1T2T3)
g = Area(PT2T3) / Area(T1T2T3)

= 1 – a – b

V

a

b

T1

T2

T3

1-a-b



Ray-Triangle Intersection III
• Check if point is inside triangle parametrically

P

P0

V

a

b

T1

T2

T3

1-a-b

𝛼 =
𝑆𝑖𝑔𝑛𝑒𝑑𝐴𝑟𝑒𝑎 𝑃, 𝑇!, 𝑇"
𝑆𝑖𝑔𝑛𝑒𝑑𝐴𝑟𝑒𝑎 𝑇!, 𝑇", 𝑇#

Start by computing (double-)area-weighted normal:
𝑁 = 𝑇" − 𝑇! × 𝑇# − 𝑇!

Now,

𝛼 =
!
" 𝑇! − 𝑃 × 𝑇" − 𝑃 2 $|$|

!
"𝑁 2

$
|$|

So,

𝛼 =
𝑇! − 𝑃 × 𝑇" − 𝑃 2 𝑁

𝑁 2 𝑁



Ray-Triangle Intersection III
• Check if point is inside triangle parametrically

P

P0

So, recipe is:

1. Compute triangle normal:
𝑁 = 𝑇" − 𝑇! × 𝑇# − 𝑇!

2. Compute “barycentric coordinates” a, b:

𝛼 =
𝑇! − 𝑃 × 𝑇" − 𝑃 2 𝑁

𝑁 2 𝑁

β =
𝑇# − 𝑃 × 𝑇! − 𝑃 2 𝑁

𝑁 2 𝑁
3. Check if point inside triangle:

0 £ a £ 1 and 0 £ b £ 1 and a + b £ 1 V

a

b

T1

T2

T3

1-a-b



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
ØBox
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
! BSP trees



Ray-Box Intersection
• Check front-facing sides for intersection with ray and return closest 

intersection (least t)

P0

P

(x2,y2)

V

(x1,y1)



Ray-Box Intersection
• Check front-facing sides for intersection with ray and return closest 

intersection (least t)
! Find intersection with plane
! Check if point is inside rectangle

P0

P

V

(x1,y1)

(x2,y2)

(0,-1)



Ray-Box Intersection
• Check front-facing sides for intersection with ray and return closest 

intersection (least t)
! Find intersection with plane
! Check if point is inside rectangle

P0

V

P(x1,y1)

(x2,y2)

(0,-1)



Other Ray-Primitive Intersections
• Cone, cylinder:
! Similar to sphere
! Must also check end caps



Other Ray-Primitive Intersections
• Cone, cylinder:
! Similar to sphere
! Must also check end caps

• Convex polygon
! Same as triangle (check point-in-polygon algebraically)
! Or, decompose into triangles, and check all of them



Other Ray-Primitive Intersections
• Cone, cylinder:
! Similar to sphere
! Must also check end caps

• Convex polygon
! Same as triangle (check point-in-polygon algebraically)
! Or, decompose into triangles, and check all of them

• Mesh
! Compute intersection for all polygons
! Return closest intersection (least t)



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
! Box
ØScene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
! BSP trees



Ray-Scene Intersection
• Intuitive method
! Compute intersection for all nodes of scene graph
! Return closest intersection (least t)

Camera

Light
Surfaces



Ray-Scene Intersection
• Scene graph is a DAG
! Traverse with recursion

Camera

Light
Surfaces

Sphere

BoxCylinder



Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

// Check for intersection with shape
shape_intersection = Intersect node’s shape with ray
if (shape_intersection is a hit) closest_intersection = shape_intersection
else closest_intersection = infinitely far miss

}



Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

// Check for intersection with shape
shape_intersection = Intersect node’s shape with ray
if (shape_intersection is a hit) closest_intersection = shape_intersection
else closest_intersection = infinitely far miss

// Check for intersection with children nodes
for each child node

// Check for intersection with child contents
child_intersection = ComputeIntersection(scene, child, ray);
if (child_intersection is a hit and is closer than closest_intersection) 

closest_intersection = child_intersection;

// Return closest intersection in tree rooted at this node
return closest_intersection

}



Ray-Scene Intersection
• Scene graph can have transformations

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]



Ray-Scene Intersection
• Scene graph node can have transformations
! Transform ray (not primitives) by inverse of M
! Intersect in coordinate system of node
! Transform intersection by M Base

[M1]

Upper Arm
[M2]

Lower Arm
[M3]



Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node
}



Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node
}

Note: directions 
must be transformed by
inverse of M N



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
! BSP trees



Ray Intersection Acceleration
• What if there are a lot of nodes?

http://www.3dm3.com



Bounding Volumes
• Check for intersection with simple bounding volume first



Bounding Volumes
• Check for intersection with bounding volume first



Bounding Volumes
• Check for intersection with bounding volume first
! If ray doesn’t intersect bounding volume, then it can’t intersect its contents



Bounding Volumes
• Check for intersection with bounding volume first
! If already found a primitive intersection closer than intersection with 

bounding box, then skip checking contents of bounding box



Bounding Volume Hierarchies
• Scene graph has hierarchy of bounding volumes
! Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C



Bounding Volume Hierarchies
• Checking bounding volumes hierarchically (within each node) can 

greatly accelerate ray intersection

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3



Bounding Volume Hierarchies
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

// Transform ray by inverse of node’s transformation
// Check for intersection with shape

// Check for intersection with  children nodes
for each child node 

// Check for intersection with child bounding box first
bbox_intersection = Intersect child’s bounding box with ray
if (bbox_intersection is a miss or further than closest_intersection) continue

// Check for intersection with child contents
child_intersection = ComputeIntersection(scene, child, ray);
if (child_intersection is a hit and is closer than closest_intersection) 

closest_intersection = child_intersection;

// Transform intersection by node’s transformation
// Return closest intersection in tree rooted at this node

}



Sort Bounding Volume Intersections
• Sort child bounding volume intersections and then visit child nodes 

in front-to-back order

• Why?



Cache Node Intersections
• For each node, store closest child intersection from previous ray 

and check that node first 

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3



Bounding Volumes
• Common primitives are:
! Axis-aligned bounding box
! Sphere

• What are the tradeoffs?
! Sphere has simple/efficient intersection code
! Bounding box is generally “tighter”



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
ØUniform grids
! Octrees
! BSP trees



Uniform Grid
• Construct uniform grid over scene
! Index primitives according to overlaps with grid cells

A

B

C

D

E

F



Uniform Grid
• Trace rays through grid cells 
! Fast
! Incremental

A

B

C

D

E

FOnly check primitives
in intersected grid cells



Uniform Grid
• Potential problem:
! How choose suitable grid resolution? 

A

B

C

D

E

F
Too little benefit

if grid is too coarse

Too much cost
if grid is too fine



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
ØOctrees
! BSP trees



Octree
• Construct adaptive grid over scene
! Recursively subdivide box-shaped cells into 8 octants
! Index primitives by overlaps with cells

A

B

C

D

E

FGenerally fewer cells



Octree
• Trace rays through neighbor cells 
! Fewer cells

A

B

C

D

E

FTrade-off fewer cells for
more expensive traversal



Ray Intersection
• Ray Intersection
! Sphere
! Triangle
! Box
! Scene

• Ray Intersection Acceleration
! Bounding volumes
! Uniform grids
! Octrees
ØBSP trees



Binary Space Partition (BSP) Tree
• Recursively partition space by planes
! BSP tree nodes store partition plane and 

set of polygons lying on that partition plane
! Every part of every polygon lies on a partition plane

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

de
f

g

Object

a

b

cde
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree



Binary Space Partition (BSP) Tree
• Traverse nodes of BSP tree front-to-back
! Visit halfspace (child node) containing P0
! Intersect polygons lying on partition plane
! Visit halfspace (other child node) not containing P0

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

de
f

g

Object

a

b

cde
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

P0



Other Accelerations
• Screen space coherence – check > 1 ray at once
! Beam tracing
! Pencil tracing
! Cone tracing

• Memory coherence
! Large scenes

• Parallelism
! Ray casting is “embarrassingly parallelizable”
! Assignment 3 (raytracer) runs program per-pixel

• etc.



Acceleration
• Intersection acceleration techniques are important
! Bounding volume hierarchies
! Spatial partitions

• General concepts
! Sort objects spatially
! Make trivial rejections quick
! Perform checks hierarchically
! Utilize coherence when possible

Expected time is sub-linear in number of primitives



Summary
• Writing a simple ray casting renderer is easy
! Generate rays
! Intersection tests
! Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)
{

R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene,  &ray);
image->SetPixel(i, j, radiance);

}
}
return image;

}



Heckbert’s Business Card Ray Tracer
typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;
double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,
.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt( vdot(A,A)),A,black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; 
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen )));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}/*minray!*/ 



Next Time is Illumination!

Without Illumination With Illumination


