

3D Rendering: Intro & Ray Casting COS 426, Fall 2022

PRINCETON UNIVERSITY

Syllabus

- I. Image processing
- II. Modeling
- **III.** Rendering
- **IV.** Animation

Image Processing (Rusty Coleman, CS426, Fall99)

Modeling

Rendering (Michael Bostock, CS426, Fall99)

What is 3D Rendering?

- Topics in computer graphics
 - **Imaging** = *representing 2D images*
 - Modeling = representing 3D objects
 - **Rendering =** *constructing 2D images from 3D models*
 - Animation = *simulating changes over time*

Rendering: Inspiration

Source: (Project Sol Part 2) https://www.youtube.com/watch?v=pNmhJx8yPLk

What is 3D Rendering?

Construct image from 3D model

Interactive 3D Rendering

- Images generated in fraction of a second (e.g., 1/30) as user controls rendering parameters (e.g., camera)
 - Achieve highest quality possible in given time
 - Useful for visualization, games, etc.

Offline 3D Rendering

Avatar

- One image generated with as much quality as possible for a particular set of rendering parameters
 - Take as much time as is needed (minutes, hours...)
 - Photorealism: movies, cut scenes, etc.

• What issues must be addressed by a 3D rendering system?

Pixar

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determination
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Camera Models

- The most common model is pin-hole camera
 - Light rays arrive along paths toward focal point
 - No lens effects (e.g., everything in focus)

Other models consider ... Depth of field Motion blur Lens distortion

Camera Parameters

• What are the parameters of a camera?

Pinhole Camera Parameters

- Position
 - Eye position (p_x , p_y , p_z)
- Orientation
 - \circ View direction (d_x, d_y, d_z) or "look at" point
 - Up direction (u_x , u_y , u_z)
- Coverage
 - Field of view (fov_x, fov_y)
- Resolution
 - \circ x and y

View Plane

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determination
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Visible Surface Determination

• The color of each pixel on the view plane depends on the radiance ("amount of light") emanating from visible surfaces

How find visible surfaces?

OPAQUE-OBJECT ALGORITHMS										Surface Augorithms	
		COMPARIS	SON ALGORITHMS	OBJECT SPACE	(partly each)	IMAGE SPACE	DEPTH PRIORIT	Y ALGORITHMS			
		edges edges		edges volumes							
	5. .	eages eages		Luges voranes	LIST PRIORITY ALGORITHMS	•	area samplin	ng	point sampling		
	/	$\langle \rangle$		\backslash	a priori priority	dynamicall, computed priority			$\langle \rangle$		
	•	•	•	•	•	•	· ·	-		•	
RESTRICTIONS		GALIMBERTI, <u>et al</u> 1969 TP.NP	LOUTREL 1967	ROBERTS 1963	CF, NP, LS (TP)	NEWELL, et al 1972	WARNOCK 1968	WATKIN5 1970	ROMNEY, et al 1967	BOUKNIGHT 1969	
RESTRICTIONS	Promote visibility	Promote visibility	TP,NP Promote visibility	TP, CC, CF, NP	Frame coherence	Моле	(TR) None	None	TR, CF, NP		
COHERENCE	of a vertex to all edges at vertex	of a vertex to all edges at vertex	of a vertex to all edges at vertex		in depth No X coherence used	None used	Area coherence	Scanline X coherence	Scanline Depth Coherence	X Coherence	
(1) What, what prop- erty (2) Method (3) Type (4) Result structure (5) Number of new entrics per frame, length of list (search) Number of searches, length of list	Back Edge Cull 1) Edges separating back-facing planes 2) Dot product with normals & topology 3) Cull 4) List of cdges, E ₅ 5) 1, E _t	back-facing planes	Back Edge Cull 1) Edges separating back-facing planes 2) Dot product with normals & topology 3) Cull 4) List of edges, E ₅ 5) 1, E _t	back-facing planes 2) Dot product with hormals & topology 3) Cull 4) List of edges.Es 5) 1. E	1) Faces - visibility	Z Sort 1) Faces, max 2 2) Comparison of max points 3) n logm 4) Ordered table 5) 1, F _T	$\frac{2 \text{ Sort (Opt)}}{1) \text{ Faces, max 2}}$ 1) Faces, max 2 2) Comparison of max points 3) n log m 4) Ordered table 5) 1, F_T	Y Sort 1) Edges, min Y 2) Comparison 3) Bucket 4) Table of Lists 5) 1, E _r	Y Sort 1) Folygons, Y endpoints 2) Comparison 3) 2 bucket 4) Table of lists 5) 1, Fr	Y Sort 1) Edges, Min Y 2) Comparison 3) Bucket 4) Table of lists 5) 1, E _y	
	Contour Edge Cull 1) Edges separating front & back faces 2) Dot product with normals & topology 3) Cull 4) List, E 5) 1, E C	(Omatted)	(Omitted)	Clipping Cull 1) Intersect edge with visible volume 2) 5) Cull 4) E 5) I ⁵ ₅ E 5) I ⁵ ₅ E	 Z) Dot product with separating planes 3) Prefix scan binary tree 	2) Depth, bounding boxes, separation 3) Bubble, splitting	Warnock Special T) Faces with windor 2) Depth, mini-max in X and Y, sum of langles 3) Radix 4 subdivi- sion with overlap 4) Stacks of unordered tables 5) L _y , F _x factor 1	2) Comparison 3) Merge (ordred) 4) 2-way linked	X Sort 1) Edges, X value 2) Comparison 3) 2 bucket 4) Table of lists 5) n, S ₂	X Merge 1) Edges, X value 2) Comparison 3) Merge (ordered) 4) Linked list 5) E _r , 2S _L (edges)	
	against all faces 2) Depth, Surroundedness 3) Exhaustive search 4) Guestitutes	Initial Visibility 1) Ray to vertex against all faces 2) Depth, surroundedness 3) Exhaustive search 4) Quantitative visibility of vertex 5) fobjects, Fr	 betweenness, surroundedness Exhaustive search Quantitative 	2) Linear Programming 3) Mini-max sort	Back-Face Cull A) Faces 2) Dot product with face normal 3) Cull 4) Smaller ordered table 5) 1, F _t	Y Sort 1) Face segment by Y range 2) Y intercept 3) Bucket 4) None 5) F + split faces, H ^r f	Depth Search 1) Surrounder faces 2) 4-corner compare 3) Exhaustive 4) Answer/failure 5) L _y , F _r /factor 2	X Sort 1) Segments, 1 left 2) Comparison 5) Bubble 4) 2-way linked list 5) n, Sg	X Priority Search 1) Edges, X value 2) Comparison 3) Priority search 4) Active segment list 5) n.m	 X Sort 1) Edges, X value 2) Comparison 3) Bubble 4) 1-way linked list 5) N, 25_k (edges) 	
	<pre>with all E 2) Penetration with sweep triangle 3) Cull (unordered) 4) Intersection list 5) E_s, E_c</pre>	2) Intersect in picture plane, depth 3) Cull (unordered) 4) Intersection list 5) E_s , $E_s - 1$	Edge Intersection 1) Intersect one Es with all E 2) Intersect in picture plane, depth 3) Cull (unordered) 4) Intersection list 5) E ₅ , E ₅ - 1		Y Cull 1) Faces by Y extent 2) Mini-max on X intercepts 3) Cull (unordered) 4) X intercepts of relevant segments 5) n, E _s	X Merge 1) Segments, X intercept 2) Comparison 3) Ordered merge 4) Ordered list 5) S _r , S _v /2	needed	2) Double comparison	 Linear equations and comparison Search (unordered 4) Visible segment n*2S₄, D_C 	$\begin{array}{c} \underline{2 \ search}\\ 1) \ Segments, \ depth\\ 2) \ Linear equations\\ and \ comparison\\ 13 \ search \ of \ un-\\ ordered \ active \ list\\ 4) \ Visible \ segment\\ 5) \ n^2S_{\ell_1} \ D_{c} \end{array}$	
	Sort Along Edge 1) Intersections on edge, ordering 2) Comparison 3) Bubble 4) Answer 5) E_s , X_s/E_s Omit if well hidden)	Sort Along Edge 1) Intersections on edge, ordering 2) 3) 4) Answer 5) E _s , X _v /E _s	Sort Along Edge 1) Intersections on edge, ordering 2) 3) 4) Answer 5) $E_5 \cdot X_V/E_5$ (Omit if well hidden		X Sort 1) Segments 2) Counters 3) Hardware 4) Segments at thas X 5) nm, S _k			2 Search 1) Segments, 2 2) Depth by logarithmic search 3) Search (unordered 4) Visible segment 5) n [*] S _V [*] f(>1), D _C	(Omitted if X priorities same as last time) D	L' C	
					Priority Search 1) Segments, priorit 2) Logic network 3) Logic network 4) ¥isible segment 5) nm, S _L		I ACM Cor	l nput. Surv	 v. 6, 1 (Mar	l rch 1974)	

In Practice... Brute Force

Ray tracing

- for each pixel: determine closest object hit by ray
- compute color

Rasterization

- for each object: enumerate pixels it hits
- keep track of color, depth of current-best surface at each pixel

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determination
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Lighting Simulation

- Lighting parameters
 - Light source emission
 - Surface reflectance
 - Atmospheric attenuation
 - Camera response

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Shadows

Occlusions from light sources

Shadows

- Occlusions from light sources
 - Soft shadows with area light source

Moller

Shadows

Herf

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Path Types

direct diffuse + indirect specular and transmission

+ soft shadows

Path Types

+ indirect diffuse illumination

Rendering Equation

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Shadows
 - Reflectance
 - Indirect illumination
 - Sampling
 - etc.

Sampling

- Scene can be sampled with any ray
 - Rendering is a problem in sampling and reconstruction

Rendering Method I: Ray Casting

Ray Casting

- Primitive operation for one class of renderers:
 - Given a ray (origin, direction)
 - Find point of first intersection with scene
- May return:
 - Whether intersection occurs
 - Point of intersection (x,y,z)
 - Parameters of intersection on object
- Used for:
 - Camera (primary) rays: backwards ray tracing
 - Accumulate brightness from lights: forwards ray tracing
 - Shadow rays
 - Indirect illumination (path tracing)

Traditional (Backwards) Ray Tracing

• The color of each pixel on the view plane depends on the radiance emanating along rays from visible surfaces in scene

Scene

- Scene has:
 - Scene graph with surface primitives
 - Set of lights
 - Camera

struct R3Scene {
 R3Node *root;
 vector<R3Light *> lights;
 R3Camera camera;
 R3Box bbox;
 R3Rgb background;
 R3Rgb ambient;

Scene Graph

- Scene graph is hierarchy of nodes, each with:
 - Bounding box (in node's coordinate system)
 - Transformation (4x4 matrix)
 - Shape (mesh, sphere, ... or null)
 - Material (more on this later)

Scene Graph

• Simple scene graph implementation:

struct R3Node {
 struct R3Node *parent;
 vector<struct R3Node *> children;
 R3Shape *shape;
 R3Matrix transformation;
 R3Material *material;
 R3Box bbox;
}

};

struct R3Shape {
 R3ShapeType type;
 R3Box *box;
 R3Sphere *sphere;
 R3Cylinder *cylinder;
 R3Cone *cone;
 R3Mesh *mesh;
}.

};


```
R2Image *RayCast(R3Scene *scene, int width, int height)
```

```
R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
```

```
image->SetPixel(i, j, radiance);
```

```
return image;
```



```
R2Image *RayCast(R3Scene *scene, int width, int height)
{
    R2Image *image = new R2Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
            image->SetPixel(i, j, radiance);
        }
    }
    return image;
```



```
R2Image *RayCast(R3Scene *scene, int width, int height)
    R2Image *image = new R2Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < \text{height}; j++) 
             R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
             R3Rgb radiance = ComputeRadiance(scene, &ray);
             image->SetPixel(i, j, radiance);
    return image;
```



```
R2Image *RayCast(R3Scene *scene, int width, int height)
    R2Image *image = new R2Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < \text{height}; j++) 
             R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
             R3Rgb radiance = ComputeRadiance(scene, &ray);
             image->SetPixel(i, j, radiance);
    return image;
```

Constructing Ray Through a Pixel

Constructing Ray Through a Pixel

• 2D Example

 Θ = frustum **half**-angle d = distance to view plane

right = towards \times up

 $P1 = P_0 + d*towards - d*tan(\Theta)*right$ $P2 = P_0 + d*towards + d*tan(\Theta)*right$

P = P1 + ((i + 0.5) / width) * (P2 - P1)V = (P - P₀) / ||P - P₀ || (d cancels out...)

Ray:
$$P = P_0 + tV$$


```
R2Image *RayCast(R3Scene *scene, int width, int height)
    R2Image *image = new R2Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < \text{height}; j++) 
             R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
             R3Rgb radiance = ComputeRadiance(scene, &ray);
             image->SetPixel(i, j, radiance);
    return image;
```


• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

R3Intersection intersection = ComputeIntersection(scene, ray);

struct R3Intersection {
 bool hit;
 R3Node *node;
 R3Point position;
 R3Vector normal;
 double t;
};

• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

R3Intersection intersection = ComputeIntersection(scene, ray); return ComputeRadiance(scene, ray, intersection);

• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

R3Intersection intersection = ComputeIntersection(scene, ray); return ComputeRadiance(scene, ray, intersection);

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Ray Intersection

- Ray Intersection
 - ➢ Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Ray-Sphere Intersection

Ray: $P = P_0 + tV$ Sphere: $IP - OI^2 - r^2 = 0$

Ray-Sphere Intersection I

Ray: $P = P_0 + tV$ Sphere: $IP - OI^2 - r^2 = 0$

Substituting for P, we get: $|P_0 + tV - O|^2 - r^2 = 0$

$$\mathsf{P} = \mathsf{P}_0 + \mathsf{t}\mathsf{V}$$

Ray-Sphere Intersection I

Ray: $P = P_0 + tV$ Sphere: $IP - OI^2 - r^2 = 0$

Substituting for P, we get: $|P_0 + tV - O|^2 - r^2 = 0$

Solve quadratic equation: $at^2 + bt + c = 0$

where:

$$a = V^{2}$$

 $b = 2 V \cdot (P_{0} - O)$
 $c = IP_{0} - CI^{2} - r^{2} = 0$

 $\mathsf{P} = \mathsf{P}_0 + \mathsf{t}\mathsf{V}$

Algebraic Method

Ray-Sphere Intersection II

Ray: $P = P_0 + tV$ Sphere: IP - OI^2 - r² = 0 Geometric Method $L = O - P_0$ $t_{ca} = L \cdot V$ Ρ' if $(t_{ca} < 0)$ return INF ι_{ca} Ρ P_0 () $P = P_0 + tV$

Ray-Sphere Intersection II

Ray-Sphere Intersection II

Ray-Sphere Intersection

 Need normal vector at intersection for lighting calculations (next lecture)

N = (P - O) / IIP - OII

Ray Intersection

- Ray Intersection
 - Sphere
 - ➤ Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Ray-Triangle Intersection

Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if intersection point is inside triangle

 P_0

Ray-Plane Intersection

Ray: $P = P_0 + tV$ Plane: $P \cdot N + d = 0$

Substituting for P, we get: $(\mathbf{P}_0 + t\mathbf{V}) \cdot \mathbf{N} + \mathbf{d} = 0$

Ray-Plane Intersection

Ray-Triangle Intersection I

Check if point is inside triangle algebraically

For each side of triangle $V_1 = T_1 - P_0$ $V_2 = T_2 - P_0$ $N_1 = V_2 \times V_1$ Normalize N_1 Plane $p(P_0, N_1)$

end return TRUE

Ray-Triangle Intersection I

· Check if point is inside triangle algebraically

For each side of triangle T_3 $V_1 = T_1 - P_0$ $V_2 = T_2 - P_0$ $N_1 = V_2 \times V_1$ Normalize N₁ Plane $p(P_0, N_1)$ if (SignedDistance(p, $P-P_0$) < 0) return FALSE end return TRUE V. T_2 V_2 P_0

Ray-Triangle Intersection II

Check if point is inside triangle algebraically

For each side of triangle $V_1 = T_1 - P$ $V_2 = T_2 - P$ $N_1 = V_2 \times V_1$ (but not V1 x V2) if $(V \cdot N_1 < 0)$ return FALSE end return TRUE

 P_0

Ray-Triangle Intersection II

Check if point is inside triangle algebraically

For each side of triangle $V_1 = T_1 - P$ $V_2 = T_2 - P$ $N_1 = V_2 \times V_1$ if $(V \cdot N_1 < 0)$ return FALSE end return TRUE

Ray-Triangle Intersection III

· Check if point is inside triangle parametrically

"Barycentric coordinates" α , β , γ : $P = \alpha T_3 + \beta T_2 + \gamma T_1$ where $\alpha + \beta + \gamma = 1$

Ray-Triangle Intersection III

Check if point is inside triangle parametrically

"Barycentric coordinates" α , β , γ : P = $\alpha T_3 + \beta T_2 + \gamma T_1$ where $\alpha + \beta + \gamma = 1$

 $\begin{aligned} \alpha &= \operatorname{Area}(\mathsf{PT}_1\mathsf{T}_2) / \operatorname{Area}(\mathsf{T}_1\mathsf{T}_2\mathsf{T}_3) \\ \beta &= \operatorname{Area}(\mathsf{PT}_3\mathsf{T}_1) / \operatorname{Area}(\mathsf{T}_1\mathsf{T}_2\mathsf{T}_3) \\ \gamma &= \operatorname{Area}(\mathsf{PT}_2\mathsf{T}_3) / \operatorname{Area}(\mathsf{T}_1\mathsf{T}_2\mathsf{T}_3) \\ &= 1 - \alpha - \beta \end{aligned}$

Ray-Triangle Intersection III

Check if point is inside triangle parametrically So, recipe is: 13 Compute triangle normal: $N = (T_2 - T_1) \times (T_3 - T_1)$ 2. Compute "barycentric coordinates" α , β : $\alpha = \frac{\left((T_1 - P) \times (T_2 - P)\right) \cdot N}{N \cdot N}$ $\beta = \frac{\left((T_3 - P) \times (T_1 - P)\right) \cdot N}{N \cdot N}$ $|-\alpha-|^2$ α 3. Check if point inside triangle: T_2 $0 \le \alpha \le 1$ and $0 \le \beta \le 1$ and $\alpha + \beta \le 1$

Ray-Triangle Intersection III

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - ➢ Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Ray-Box Intersection

Check front-facing sides for intersection with ray and return closest intersection (least t)

Ray-Box Intersection

- Check front-facing sides for intersection with ray and return closest intersection (least t)
 - $\circ~$ Find intersection with plane
 - Check if point is inside rectangle

Ray-Box Intersection

- Check front-facing sides for intersection with ray and return closest intersection (least t)
 - Find intersection with plane
 - Check if point is inside rectangle

Other Ray-Primitive Intersections

- Cone, cylinder:
 - Similar to sphere
 - Must also check end caps

Other Ray-Primitive Intersections

- Cone, cylinder:
 - Similar to sphere
 - Must also check end caps
- Convex polygon
 - Same as triangle (check point-in-polygon algebraically)
 - Or, decompose into triangles, and check all of them

Other Ray-Primitive Intersections

- Cone, cylinder:
 - Similar to sphere
 - Must also check end caps
- Convex polygon

- Same as triangle (check point-in-polygon algebraically)
- Or, decompose into triangles, and check all of them
- Mesh
 - Compute intersection for all polygons
 - Return closest intersection (least t)

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Ray-Scene Intersection

- Intuitive method
 - Compute intersection for **all** nodes of scene graph
 - Return closest intersection (least t)

Ray-Scene Intersection

- Scene graph is a DAG
 - Traverse with recursion

Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

// Check for intersection with shape

shape_intersection = Intersect node's shape with ray
if (shape_intersection is a hit) closest_intersection = shape_intersection
else closest_intersection = infinitely far miss

Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

// Check for intersection with shape

shape_intersection = Intersect node's shape with ray
if (shape_intersection is a hit) closest_intersection = shape_intersection
else closest_intersection = infinitely far miss

// Check for intersection with children nodes

for each child node

// Return closest intersection in tree rooted at this node
return closest_intersection

Ray-Scene Intersection

Scene graph can have transformations

Ray-Scene Intersection

- Scene graph node can have transformations
 - Transform ray (not primitives) by inverse of M
 - Intersect in coordinate system of node
 - Transform intersection by M

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

// Transform ray by inverse of node's transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node's transformation

// Return closest intersection in tree rooted at this node

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

// Transform ray by inverse of node's transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node's transformation

// Return closest intersection in tree rooted at this node

Note: directions must be transformed by inverse of M

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Ray Intersection Acceleration

• What if there are a lot of nodes?

http://www.3dm3.com

Check for intersection with simple bounding volume first

Check for intersection with bounding volume first

- Check for intersection with bounding volume first
 - If ray doesn't intersect bounding volume, then it can't intersect its contents

- Check for intersection with bounding volume first
 - If already found a primitive intersection closer than intersection with bounding box, then skip checking contents of bounding box

Bounding Volume Hierarchies

- Scene graph has hierarchy of bounding volumes
 - Bounding volume of interior node contains all children

Bounding Volume Hierarchies

- Checking bounding volumes hierarchically (within each node) can greatly accelerate ray intersection

Bounding Volume Hierarchies

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

// Transform ray by inverse of node's transformation
// Check for intersection with shape

// Check for intersection with children nodes for each child node

// Check for intersection with child bounding box first
bbox_intersection = Intersect child's bounding box with ray
if (bbox_intersection is a miss or further than closest_intersection) continue

// Transform intersection by node's transformation
// Return closest intersection in tree rooted at this node

Sort Bounding Volume Intersections

 Sort child bounding volume intersections and then visit child nodes in front-to-back order

Cache Node Intersections

- For each node, store closest child intersection from previous ray and check that node first

- Common primitives are:
 - Axis-aligned bounding box
 - Sphere
- What are the tradeoffs?
 - Sphere has simple/efficient intersection code
 - Bounding box is generally "tighter"

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Uniform Grid

- Construct uniform grid over scene
 - Index primitives according to overlaps with grid cells

Uniform Grid

- Trace rays through grid cells
 - Fast
 - Incremental

Only check primitives in intersected grid cells

Uniform Grid

- Potential problem:
 - How choose suitable grid resolution?

Too little benefit if grid is too coarse

Too much cost if grid is too fine

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - BSP trees

Octree

- Construct adaptive grid over scene
 - Recursively subdivide box-shaped cells into 8 octants
 - $\circ~$ Index primitives by overlaps with cells

Octree

- Trace rays through neighbor cells
 - $\circ~$ Fewer cells

Trade-off fewer cells for more expensive traversal

Ray Intersection

- Ray Intersection
 - Sphere
 - Triangle
 - Box
 - Scene
- Ray Intersection Acceleration
 - Bounding volumes
 - Uniform grids
 - Octrees
 - ➢ BSP trees

Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - BSP tree nodes store partition plane and set of polygons lying on that partition plane
 - Every part of every polygon lies on a partition plane

Binary Space Partition (BSP) Tree

- Traverse nodes of BSP tree front-to-back
 - Visit halfspace (child node) containing P₀
 - Intersect polygons lying on partition plane
 - \circ Visit halfspace (other child node) not containing P₀

Other Accelerations

- Screen space coherence check > 1 ray at once
 - Beam tracing
 - Pencil tracing
 - Cone tracing
- Memory coherence
 Large scenes

- Parallelism
 - Ray casting is "embarrassingly parallelizable"
 - Assignment 3 (raytracer) runs program per-pixel
- etc.

Acceleration

- Intersection acceleration techniques are important
 - Bounding volume hierarchies
 - Spatial partitions
- General concepts
 - Sort objects spatially
 - Make trivial rejections quick
 - Perform checks hierarchically
 - Utilize coherence when possible

Expected time is sub-linear in number of primitives

Summary

- Writing a simple ray casting renderer is easy
 - Generate rays
 - Intersection tests
 - Lighting calculations

```
R2Image *RayCast(R3Scene *scene, int width, int height)
{
    R2Image *image = new R2Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
            R3Rgb radiance = ComputeRadiance(scene, &ray);
            image->SetPixel(i, j, radiance);
        }
    }
    return image;
}
```

Heckbert's Business Card Ray Tracer

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color; double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1., .7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12., .8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x *B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z; return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect (P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)), u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&& u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta= s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black), eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&& intersect(P,U)==I)color=vcomb(e,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z *=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*dsqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb (s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf ("%.0f %.0f %.0f\n",U);}/*minray!*/

Next Time is Illumination!

Without Illumination

With Illumination