
Matthias Teschner

Computer Science Department
University of Freiburg

Image Processing and Computer Graphics

Projections and
Transformations in OpenGL

University of Freiburg – Computer Science Department – Computer Graphics - 2

Motivation

 for the rendering of objects in 3D space,
a planar view has to be generated

 3D space is projected onto a 2D plane considering
external and internal camera parameters
 position, orientation, focal length

 in homogeneous notation, 3D projections can be
represented with a 4x4 transformation matrix

University of Freiburg – Computer Science Department – Computer Graphics - 3

Examples

 left images
 3D scene with

a view volume

 right images
 projections onto

the viewplane

 top-right
 parallel projection

 top-bottom
 perspective projection

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 4

Outline

 2D projection

 3D projection

 OpenGL projection matrix

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 5

Projection in 2D

 a 2D projection from v onto
l maps a point p onto p'

 p' is the intersection of
the line through p
and v with line l

 v is the viewpoint,
center of perspectivity

 l is the viewline
 the line through p

and v is a projector
 v is not on the line l, p ≠ v

University of Freiburg – Computer Science Department – Computer Graphics - 6

Projection in 2D

 if the homogeneous component of the viewpoint v
is not equal to zero, we have a perspective projection
 projectors are not parallel

 if v is at infinity, we have a parallel projection
 projectors are parallel

perspective projection parallel projection

University of Freiburg – Computer Science Department – Computer Graphics - 7

Classification

 location of viewpoint and orientation of the viewline
determine the type of projection

 parallel (viewpoint at infinity, parallel projectors)
 orthographic (viewline orthogonal to the projectors)
 oblique (viewline not orthogonal to the projectors)

 perspective (non-parallel projectors)
 one-point

(viewline intersects one principal axis,
i.e. viewline is parallel to a principal axis, one vanishing point)

 two-point
(viewline intersects two principal axis, two vanishing points)

University of Freiburg – Computer Science Department – Computer Graphics - 8

General Case

 a 2D projection is
represented by matrix

University of Freiburg – Computer Science Department – Computer Graphics - 9

Example





 e.g. d=-1, (1,2)T is mapped to (0,1)T

University of Freiburg – Computer Science Department – Computer Graphics - 10

Discussion

 matrices M and M represent the same
transformation

 therefore, and represent

the same transformation


 x is mapped to zero, y is scaled depending on x
 moving d to infinity results in parallel projection

University of Freiburg – Computer Science Department – Computer Graphics - 11

Discussion

 parallel projection

University of Freiburg – Computer Science Department – Computer Graphics - 12

Discussion



maps p to p'x = 0

maps p to p'y = -d py

maps p with pw=1 to p'w = px - d

University of Freiburg – Computer Science Department – Computer Graphics - 13

Discussion

 2D transformation in homogeneous form

 wx and wy map the homogeneous component w
of a point to a value w' that depends on x and y

 therefore, the scaling of a point depends on x and / or y

 in perspective 3D projections, this is generally employed
to scale the x- and y- component with respect to z,
its distance to the viewer

University of Freiburg – Computer Science Department – Computer Graphics - 14

Outline

 2D projection

 3D projection

 OpenGL projection matrix

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 15

Projection in 3D

 a 3D projection from v onto
n maps a point p onto p'

 p' is the intersection of
the line through p
and v with plane n

 v is the viewpoint,
center of perspectivity

 n is the viewplane

 the line through p
and v is a projector

 v is not on the plane n, p ≠ v

University of Freiburg – Computer Science Department – Computer Graphics - 16

General Case

 a 3D projection is
represented by
a matrix

University of Freiburg – Computer Science Department – Computer Graphics - 17

Example





 e.g. d=-1, (1,2,0)T is mapped to (0,1,0)T

University of Freiburg – Computer Science Department – Computer Graphics - 18

Example

 parallel projection onto the plane z = 0 with
viewpoint / viewing direction v = (0,0,1,0)T

 x- and y-component are unchanged, z is mapped to zero

 remember that M and M with, e. g., =-1 represent
the same transformation

University of Freiburg – Computer Science Department – Computer Graphics - 19

Outline

 2D projection

 3D projection

 OpenGL projection matrix
 perspective projection

 parallel projection

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 20

View Volume

 in OpenGL, the projection transformation maps
a view volume to the canonical view volume

 the view volume is specified by its boundary
 left, right, bottom, top, near far

 the canonical view volume is a cube from (-1,-1,-1) to
(1,1,1)

[Song Ho Ahn]

(l, t, f)

(x, y, f)

this transformation implements
orthographic projection

this transformation implements
perspective projection

University of Freiburg – Computer Science Department – Computer Graphics - 21

OpenGL Projection Transform

 the projection transform maps
 from eye coordinates
 to clip coordinates (w-component is not necessarily one)
 to normalized device coordinates NDC

(x and y are normalized with respect to w,
w is preserved for further processing)

 the projection transform maps
 the x-component of a point from (left, right) to (-1, 1)
 the y-component of a point from (bottom, top) to (-1, 1)
 the z-component of a point from (near, far) to (-1, 1)

 in OpenGL, near and far are negative, so the mapping
incorporates a reflection (change of right-handed to left-handed)

 however, in OpenGL functions, usually the negative
of near and far is specified which is positive

University of Freiburg – Computer Science Department – Computer Graphics - 22

Perspective Projection

 to obtain x- and y-component of a projected point, the
point is first projected onto the near plane (viewplane)

 note that n and f denote the
negative near and far values

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 23

Mapping of xp and yp to (-1, 1)

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 24

Projection Matrix

 from

 we get

 with

clip coordinates

normalized device
coordinates

University of Freiburg – Computer Science Department – Computer Graphics - 25

Mapping of ze to (-1, 1)

 ze is mapped from (near, far) or (-n, -f) to (-1, 1)

 the transform does not depend on xe and ye

 so, we have to solve for A and B in

University of Freiburg – Computer Science Department – Computer Graphics - 26

Mapping of ze to (-1, 1)

 ze=-n with we=1 is mapped to zn=-1

 ze=-f with we=1 is mapped to zf=1

 the complete matrix is

University of Freiburg – Computer Science Department – Computer Graphics - 27

Perspective Projection Matrix

 the matrix

transforms the view
volume, the pyramidal
frustum to the
canonical view
volume

[Song Ho Ahn]

pyramidal frustum

University of Freiburg – Computer Science Department – Computer Graphics - 28

Perspective Projection Matrix

 projection matrix for negated values for n and f (OpenGL)

 projection matrix for actual values for n and f

University of Freiburg – Computer Science Department – Computer Graphics - 29

Symmetric Setting

 the matrix simplifies for r = -l and t = -b

University of Freiburg – Computer Science Department – Computer Graphics - 30

Near Plane

 nonlinear mapping of ze :

 varying resolution / accuracy due to fix-point
representation of depth values in the depth buffer

 do not move the near plane too close to zero

ze ze ze

zn zn zn

University of Freiburg – Computer Science Department – Computer Graphics - 31

Far Plane

 setting the far plane to infinity is not too critical

ze

zn

University of Freiburg – Computer Science Department – Computer Graphics - 32

Outline

 2D projection

 3D projection

 OpenGL projection matrix
 perspective projection

 parallel projection

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 33

Parallel Projection

 the view volume is represented by a cuboid
 left, right, bottom, top, near, far

 the projection transform maps the
cuboid to the canonical view volume

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 34

Mapping of xe, ye, ze to (-1,1)

 all components of a point in eye coordinates are
linearly mapped to the range of (-1,1)

 linear in xe, ye, ze

 combination of scale and translation

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 35

Orthographic Projection Matrix

 general form

 simplified form for a symmetric view volume

University of Freiburg – Computer Science Department – Computer Graphics - 36

Outline

 2D projection

 3D projection

 OpenGL projection matrix

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 37

OpenGL Matrices

 objects are transformed from object to eye
space with the GL_MODELVIEW matrix

 objects are transformed from eye space to
clip space with the GL_PROJECTION matrix

 colors are transformed with the color matrix GL_COLOR

 texture coordinates are transformed with the texture
matrix GL_TEXTURE

University of Freiburg – Computer Science Department – Computer Graphics - 38

Matrix Stack

 each matrix type has a stack

 the matrix on top of the stack is used

 glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(left, right, bottom, top, near, far);

choose a matrix stack

the top element is replaced with I4

projection matrix P is generated
the top element on the stack is
multiplied with P resulting in I4P

University of Freiburg – Computer Science Department – Computer Graphics - 39

Matrix Stack

 glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(x,y,z);

glRotatef(alpha,1,0,0);

 note that objects are rotated by R,
followed by the translation T

choose a matrix stack

the top element is replaced with I4

translation matrix T is generated
the top element on the stack is
multiplied with T resulting in I4T

rotation matrix R is generated
the top element on the stack is
multiplied with R resulting in I4T  R

University of Freiburg – Computer Science Department – Computer Graphics - 40

Matrix Stack

 glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(x,y,z);

glRotatef(alpha,1,0,0);

glPush();

glTranslatef(x,y,z);

glPop();

choose a matrix stack

the top element is replaced with I4

the top element is I4T

the top element is I4TR

the top element I4TR
is pushed into the stack
the newly generated top element
is initialized with I4TR

the top element is I4TRT

the top element is replaced by
the previously stored element I4TR

University of Freiburg – Computer Science Department – Computer Graphics - 41

OpenGL Matrix Functions

 glPushMatrix(): push the current matrix into the current matrix stack.

 glPopMatrix(): pop the current matrix from the current matrix stack.

 glLoadIdentity(): set the current matrix to the identity matrix.

 glLoadMatrix{fd}(m): replace the current matrix with the matrix m.

 glLoadTransposeMatrix{fd}(m) : replace the current matrix with the row-
major ordered matrix m.

 glMultMatrix{fd}(m): multiply the current matrix by the matrix m, and update
the result to the current matrix.

 glMultTransposeMatrix{fd}(m): multiply the current matrix by the row-major
ordered matrix m, and update the result to the current matrix.

 glGetFloatv(GL_MODELVIEW_MATRIX, m): return 16 values of
GL_MODELVIEW matrix to m.

 note that OpenGL functions expect column-major matrices
in contrast to commonly used row-major matrices

University of Freiburg – Computer Science Department – Computer Graphics - 42

Modelview Example

 objects are transformed with V-1M

 V=TvRv

 M1..4=T1..4R1..4

 implementation
 choose the GL_MODELVIEW stack

 initialize with I4

 rotate with Rv
-1

 translate with Tv
-1

 push

 translate with T1

 rotate with R1

 render object M1

 pop

 …

M1
M2

M3

M4
V

[Akenine-Moeller et al.:
Real-time Rendering]

the camera is oriented and then translated

objects are oriented and then translated

I4

Rv
-1

Rv
-1 ·Tv

-1 = V-1

Rv
-1 · Tv

-1

Rv
-1 · Tv

-1 · T1

Rv
-1 · Tv

-1 · T1 · R1

Rv
-1 · Tv

-1

University of Freiburg – Computer Science Department – Computer Graphics - 43

Summary

 2D projection

 3D projection

 OpenGL projection matrix
 perspective projection

 parallel projection

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 44

References

 Duncan Marsh: "Applied Geometry for Computer
Graphics and CAD", Springer Verlag, Berlin, 2004.

 Song Ho Ahn: "OpenGL", http://www.songho.ca/ .

