Image Processing and Computer Graphics

Projections and
Transformations in OpenGlL

Matthias Teschner

Computer Science Department
University of Freiburg

Albert-Ludwigs-Universitit Freiburg

UNI

FREIBURG

Motivation

= for the rendering of objects in 3D space,
a planar view has to be generated

= 3D space is projected onto a 2D plane considering
external and internal camera parameters
= position, orientation, focal length

= in homogeneous notation, 3D projections can be
represented with a 4x4 transformation matrix

University of Freiburg — Computer Science Department — Computer Graphics - 2

Examples

» leftimages
= 3D scene with >’
' : ¥ YT YRR YTYY
a view volume eman e
= right images

= projections onto

the viewplane s

= top-right e
= parallel projection A .

= top-bottom :

= perspective projection
[Song Ho Ahn]

University of Freiburg — Computer Science Department — Computer Graphics - 3

Outline

= 2D projection

= 3D projection

= OpenGL projection matrix

= OpenGL transformation matrices

University of Freiburg — Computer Science Department — Computer Graphics - 4

Projection in 2D

— — — T
= a 2D projection from v onto l=1az +by+c=0}=(abc)

| maps a point p onto p'
= p'isthe intersection of
the line through p
and v with line |
= Visthe viewpoint,
center of perspectivity
= |isthe viewline
= theline through p
and v is a projector
= Visnotonthelinel, p#v

University of Freiburg — Computer Science Department — Computer Graphics - 5

Projection in 2D

= if the homogeneous component of the viewpoint v
IS not equal to zero, we have a perspective projection
= projectors are not parallel

= if vis atinfinity, we have a parallel projection
= projectors are parallel

vV = (ajﬂ y? 1)T

perspective projection parallel projection ——2_

University of Freiburg — Computer Science Department — Computer Graphics - 6

Classification

= |ocation of viewpoint and orientation of the viewline
determine the type of projection

» parallel (viewpoint at infinity, parallel projectors)
= orthographic (viewline orthogonal to the projectors)
= oblique (viewline not orthogonal to the projectors)

= perspective (non-parallel projectors)
= One-point
(viewline intersects one principal axis,
i.e. viewline is parallel to a principal axis, one vanishing point)
= two-point
(viewline intersects two principal axis, two vanishing points)

University of Freiburg — Computer Science Department — Computer Graphics - 7

General Case

= a 2D projection is
represented by matrix
M= vl — (1-v)I3

ve.a v.b v,c
T _
vl = vya v,b vyc

Vw@ Vb vyc

o O

(1-v)I = (av, + buy, + cvy) (

o = O

1= {ax+by+c=0} = (a,b,c)"

= o O

University of Freiburg — Computer Science Department — Computer Graphics - 8

Example

N
1={lz+0y+0=0}
= (1,0,0)"

d
M 0
1

v =(d,0,1)
1 d 0 O 0
; (1,0,0)((0) (o))lg_(o % 0)
0 1 1 0 —d

d=-1, (1,2)" is mapped to (0,1)'
0
1
0

(- .

University of Freiburg — Computer Science Department — Computer Graphics - 9

Discussion

= matrices M and AM represent the same
transformation (AMp = \p’)

s therefore, (0 0 0\ and [©

0 —d O 0

1 0 —d —%

0
0
1

o = O

) represent

the same transformation

0 0 0 x 0

] 0
0O 1 0 y = Y N(y)
-1 0 1 w —2Z 4w W

= X iS mapped to zero, y is scaled depending on x
= moving d to infinity results in parallel projection

0 0 0 0 0 0
lim 0 10 1]=(0 1 0
d=eo \ 1 g 1 0 0 1

d

University of Freiburg — Computer Science Department — Computer Graphics - 10

Discussion

parallel projection

[|
1z{13:—|—0y—|—0:0}y
= (1,0,0)T
: - —@
v = (—1,0,0) P’ =(0,p,1)" p=(ps,py,)"
M = vIT — (1-v)I3
—1 1 —1 0O 0 O
M=| 0 |(1,0,0)— 0 0 I,=(0 1 0
0 0 0 0O 0 1

University of Freiburg — Computer Science Department — Computer Graphics - 11

Discussion

"=z troyro=0]Y
= (1,0,0)T
P = (pxapya 1)T
v =(d,0,1) -
/ p) dp /
— Y — UL / — Y p— f— N
Py =0 o= =p =_——"4 p,=1=p,=p;—d
0 0 0 mapsptop', =0
=M=| 0 —d 0 maps pto p', =-dp,
1 0 —d maps p with p,=1top', = p,-d

University of Freiburg — Computer Science Department — Computer Graphics - 12

Discussion

= 2D transformation in homogeneous form

mi1 Mi2 iy
M = mo1 M99 ty
w, w, h

= w,and w, map the homogeneous component w
of a point to a value w' that depends on x and y

» therefore, the scaling of a point depends on xand / or y
= in perspective 3D projections, this is generally employed
to scale the x- and y- component with respect to z,
its distance to the viewer

University of Freiburg — Computer Science Department — Computer Graphics - 13

Outline

2D projection

3D projection

OpenGL projection matrix
OpenGL transformation matrices

University of Freiburg — Computer Science Department — Computer Graphics - 14

Projection in 3D

n = {ax + by + cz + d = 0}

= a 3D projection fromvonto (a.b.c.d)T

n maps a point p onto p'
= p'istheintersection of
the line through p
and v with plane n
= Visthe viewpoint,
center of perspectivity
= nisthe viewplane
= theline through p
and v is a projector

= Visnotontheplanen, p#v -

University of Freiburg — Computer Science Department — Computer Graphics - 15

P = (pa:apyapza 1)T

General Case

o ={ax+by+cz+d=0
= a 3D projection is n= o by ez }

represented by

a matrix
M =vnl — (n-v)l

P = (pxapyapz; 1)

Ve Uz vpc v.d

d

vn! =
v,a v,b v,c v,d
d

V@ Uypb vy, Uy

(n-v)I = (avy + bvy + cv, + dvy,)

o o =
O = O
_—o O
o OO

0 0 0 1 -

University of Freiburg — Computer Science Department — Computer Graphics - 16

Example

n={ax+by+cz+d=0}

= (1,0,0,00" 1Y
[|
P = (p:mpyapm 1)T
_ T
p, — (Ovp;f:p,zv 1)
v=(d0,0,1) ~ T
d 1 d 0 0 0 0
0 0 0 0 -d 0 0
[| _ o _
M=, [(100.0) 0 0 L=14v 0 -4 o
1 0 1 1 0 0 —d
= e.g.d=-1, (1,2,0)" is mapped to (0,1,0)"
0O 0 0 O 1 0
01 0 0 2 | | 2
0O 0 1 0O 0 N 0
1 0 0 1 1 2

University of Freiburg — Computer Science Department — Computer Graphics - 17

Example

= parallel projection onto the plane z =0 with
viewpoint / viewing direction v=(0,0,1,0)"
n={0zx+0y+12+0=0}
v =(0,0,1,0)"

0 0 0 1 0 0 0
0 0 0 0 -1 0 0
M=1 (0,0,1,0) — 1] |1 Iy = 0O 0 0 0
0 0 0 0 0 0 -1

= X- and y-component are unchanged, z is mapped to zero

« remember that M and AM with, e. g., A=-1 represent
the same transformation

University of Freiburg — Computer Science Department — Computer Graphics - 18

Outline

= 2D projection
= 3D projection
= OpenGL projection matrix
= perspective projection
= parallel projection
= OpenGL transformation matrices

University of Freiburg — Computer Science Department — Computer Graphics - 19

View Volume

= in OpenGL, the projection transformation maps
a view volume to the canonical view volume

= the view volume is specified by its boundary
= left, right, bottom, top, near far

= the canonical view volume is a cube from (-1,-1,-1) to
(1,1,1)

{1.-1,-1}

[Song Ho Ahn] {1,-1,-1)

this transformation implements this transformation implements
orthographic projection perspective projection Tzm™
University of Freiburg — Computer Science Department — Computer Graphics - 20

OpenGL Projection Transform

= the projection transform maps
= from eye coordinates
= to clip coordinates (w-component is not necessarily one)
= to normalized device coordinates NDC
(x and y are normalized with respect to w,
w is preserved for further processing)

= the projection transform maps
= the x-component of a point from (left, right) to (-1, 1)
= the y-component of a point from (bottom, top) to (-1, 1)

= the z-component of a point from (near, far) to (-1, 1)
= in OpenGL, near and far are negative, so the mapping
incorporates a reflection (change of right-handed to left-handed)
= however, in OpenGL functions, usually the negative
of near and far is specified which is positive

University of Freiburg — Computer Science Department — Computer Graphics - 21

Perspective Projection

= to obtain x- and y-component of a projected point, the
point is first projected onto the near plane (viewplane)

[Song Ho Ahn]

Lp —n _ NTe Yp _ —n —
. :}[L'p_ — :>yp_

_Ze ye Ze

nyYye
_Ze

Le

= note that n and f denote the
negative near and far values 55—

University of Freiburg — Computer Science Department — Computer Graphics - 22

Mapping of x, and y, to (-1, 1)

xﬂ ..F"

A A

iV o
:I P X, ib = Lh-r..‘r"p
. L1 o

[Song Ho Ahn]

T, = axp + 3 Yn = Qyp + 3

1—(—1) 1—(-1)
T A

r+ t+b
A -

2 [
v Tp T+ . 2yp T+D

r—1 r—I t—b t—0b

T 1 an_+r+fz 1 2n t+b
"o \r =17 =" yn_—ze t—byeth—bZ6

University of Freiburg — Computer Science Department — Computer Graphics - 23

Projection Matrix

s from

_ 1 2n 41 _ 1 2n t+b
ajn — — 2. (T,_laje _|_ ,r._lze) yn _ —Ze (t_bye —I— t—bze

m WeE gEt
2 [

Te = 2O %Té 0 Te

yc — 0 t_nb t—b O ?Je

Ze . . : : Ze clip coordinates
We 0 0 —1 0 We

Ln -rc/wc

Yn — yc/wc normalized device
Zn Zc/wc coordinates

1 We /W,

University of Freiburg — Computer Science Department — Computer Graphics - 24

Mapping of z_ to (-1, 1)

= 7, is mapped from (near, far) or (-n, -f) to (-1, 1)
= the transform does not depend on x, and vy,
= SO, we have to solve for Aand B in

T TQT”’ 0 :—i’l 0 Te
/yc_(0 2o b o | [o
Ze | 0 0 A B Ze
\we /) \ 0o 0o -1 0/ \w)/

University of Freiburg — Computer Science Department — Computer Graphics - 25

Mapping of z_ to (-1, 1)

= z,=-n with w_ =1 is mapped to z,,=-1
= z,=-f with w_=1 is mapped to z;=1

_ _J+n _ _2fn
- A=—5— =bLb=—-5
= the complete matrix is

2n r-+1
(0 g

o o i _a

0 0 == —7=
\ 0o 0o 1 0)

University of Freiburg — Computer Science Department — Computer Graphics - 26

Perspective Projection Matrix

= the matrix

2n r-+1(
(= U T 0
0 2n t+b 0
t—b t—b ;
0 0 - —_Z — _f i?:; (Lr. Lo f)
\ 0o o0 -1 0) ks
transforms the view .
. » bt {r.t.nl)
volume, the pyramidal |
frustum to the - u.a.m\
canonical view (r:5,n) (Lr. Lb, 1)
VOlume pyramidal frustum

[Song Ho Ahn] e

University of Freiburg — Computer Science Department — Computer Graphics - 27

Perspective Projection Matrix

s projection matrix for negated values for n and f (OpenGL)

= projection matrix for actual values for nand f

20
(Toli_nb
0 0
\ 0 o0

20
0 0
\ 0 0

University of Freiburg — Computer Science Department — Computer Graphics - 28

r+l
r—I
t+b
t—b
_ftn
f—n

—1

0

_2fn

f—n
0

0

)
/

\

Symmetric Setting

= the matrix simplifies forr=-land t =-b

r+{=20 /% 0 0 0 \
r—1=2r N 0 = 0 0
t+b=0 0 0 —£ -
o \ 0o 0 1 0)

University of Freiburg — Computer Science Department — Computer Graphics - 29

Near Plane

= nonlinear mapping of z, : z, =

ftn
f—

n

2fn

Ze f—m

= varying resolution / accuracy due to fix-point
representation of depth values in the depth buffer

n=9f=10

n=17f=10

n=01f=10

= do not move the near plane too close to zero

University of Freiburg — Computer Science Department — Computer Graphics - 30

Far Plane

= setting the far plane to infinity is not too critical

2_nl 0 7~_+§ 0
T™— o T—b
0 & = 0
0 0 _Itn _2/n
f—n —-n
0 0 —1 0
f— o0

zn:1+§

University of Freiburg — Computer Science Department — Computer Graphics - 31

0.5

Outline

= 2D projection
= 3D projection
= OpenGL projection matrix
= perspective projection
= parallel projection
= OpenGL transformation matrices

University of Freiburg — Computer Science Department — Computer Graphics - 32

Parallel Projection

= the view volume is represented by a cuboid
= left, right, bottom, top, near, far

D)

: fl:-' - n) Alrb)

| o

(l.b.n)

A

| g [Song Ho Ahn]
1r. b n)

= the projection transform maps the
cuboid to the canonical view volume

University of Freiburg — Computer Science Department — Computer Graphics - 33

Mapping of x_, y., z, to (-1,1)

= all components of a point in eye coordinates are
linearly mapped to the range of (-1,1)

X, Y. [Song Ho Ahn] Z
A o A

+1 —7 +17 ———————— +1
| ! |
f | b i : N -1
:‘/.-r" F - X / / = ¥Ye _Jf \ -z,
| ' |
N . 11

= linearinx,, Yo, Z,
s combination of scale and translation

University of Freiburg — Computer Science Department — Computer Graphics - 34

Orthographic Projection Matrix

= general form

20 0 e
/Olﬁ_bo_g\
00—
Vo o o 1)

simplified form for a symmetric view volume

r+0l=0 (% 0 0 0 \
r—1=2r 0 1+ 0 0

f4+b=0 “lo o —2 I
t—b=2t \o 0 0 1)

University of Freiburg — Computer Science Department — Computer Graphics - 35

Outline

= 2D projection

= 3D projection

= OpenGL projection matrix

= OpenGL transformation matrices

University of Freiburg — Computer Science Department — Computer Graphics - 36

OpenGL Matrices

= Objects are transformed from object to eye

space with the GL. MODELVIEW matrix
GL_MODELVIEW - p

= Objects are transformed from eye space to
clip space with the GL_PROJECTION matrix
GL_PROJECTION - GL.MODELVIEW - p

= colors are transformed with the color matrix GL_COLOR

s texture coordinates are transformed with the texture
matrix GL_ TEXTURE

University of Freiburg — Computer Science Department — Computer Graphics - 37

Matrix Stack

= each matrix type has a stack
= the matrix on top of the stack is used

= glMatrixMode (GL PROJECTION) ; choose a matrix stack
glLoadIdentity (), the top element is replaced with I,
glFrustum(left, right, bottom, top, near, far);

projection matrix P is generated
the top element on the stack is
multiplied with P resulting in 1,-P

University of Freiburg — Computer Science Department — Computer Graphics - 38

Matrix Stack

= glMatrixMode (GL MODELVIEW) ; choose a matrixstack

glLoadIdentity () ; the top element is replaced with I,
translation matrix T is generated
glTranslatef (x,vy,2); the top element on the stack is

multiplied with T resulting in I,-T

rotation matrix R is generated
glRotatef (alpha,1,0,0); the top element on the stack is
multiplied with R resulting in 1,-T - R

= note that objects are rotated by R,
followed by the translation T

University of Freiburg — Computer Science Department — Computer Graphics - 39

Matrix Stack

glMatrixMode (GL MODELVIEW) ; choose amatrixstack

glLoadIdentity (), the top element is replaced with I,
glTranslatef (x,v,2); the top elementis |,-T
glRotatef (alpha,1,0,0); the top element is I,-T-R
glPush () ; the top element I,-T-R

is pushed into the stack
the newly generated top element
is initialized with I,-T-R

glTranslatef (x,vy,2); the top element is I,-T-R-T

glPop () ; the top element is replaced by

the previously stored element I,-T-R

University of Freiburg — Computer Science Department — Computer Graphics - 40

FREIBURG

OpenGL Matrix Functions

= glPushMatrix ():push the current matrix into the current matrix stack.

= glPopMatrix ():pop the current matrix from the current matrix stack.

= glLoadIdentity ():setthe current matrix to the identity matrix.

» glLoadMatrix{£fd} (m):replace the current matrix with the matrix m.

= glLoadTransposeMatrix{fd} (m) :replace the current matrix with the row-
major ordered matrix m.

= glMultMatrix{£fd} (m): multiply the current matrix by the matrix m, and update
the result to the current matrix.

= glMultTransposeMatrix{fd} (m): multiply the current matrix by the row-major
ordered matrix m, and update the result to the current matrix.

= glGetFloatv(GL MODELVIEW MATRIX, m):return 16 values of
GL _MODELVIEW matrix to m.

= note that OpenGL functions expect column-major matrices
in contrast to commonly used row-major matrices

University of Freiburg — Computer Science Department — Computer Graphics - 41

Modelview Example

= objects are transformed with V-IM

= V:TVRV the camera is oriented and then translated
= objects are oriented and then translated
= My =T Ry o |

= implementation

= choose the GL_MODELVIEW stack
= initialize with |,

Camera direction

ly
= rotate with R,? R,? My
= translate with T,? R/ T, t=V1
= push R,/1-T, 1
= translate with T, R,I-T, 1T, > X
= rotate with R, R7*-Th Ty Ry \ M,
= render object M, Camera
. pop R T, position z
. L [Akenine-Moeller et al.:

Real-time Rendering] s

University of Freiburg — Computer Science Department — Computer Graphics - 42

Summary

= 2D projection
= 3D projection
= OpenGL projection matrix
= perspective projection
= parallel projection
= OpenGL transformation matrices

University of Freiburg — Computer Science Department — Computer Graphics - 43

References

= Duncan Marsh: "Applied Geometry for Computer
Graphics and CAD", Springer Verlag, Berlin, 2004.

= Song Ho Ahn: "OpenGL", http://www.songho.ca/ .

University of Freiburg — Computer Science Department — Computer Graphics - 44

