
Successful System
Implementation Strategies

Oct 27, 2022

1

Overview

● Understand the Concepts and Code Structure
● Iterative Design Process

○ Start Simple, then Build Up
● Modular Programming
● Tips on Debugging

2

Understanding Concepts and Code Structure

3

Understand the Concept and Code Structure

● What is the conceptual system you want to build?
○ Understand the concept and verify your knowledge with some examples
○ Rewrite the algorithm to some pseudocode, which can serve as the guide during actual

programming
● How is the system physically built?

○ Read the skeleton code
○ Map the algorithms/concepts to the given code structure
○ Draw flow charts to understand the code flow

● How to use the system?
○ Read the testing script to see how an external user will talk to our system and invoke its APIs

to accomplish desired tasks

4

Concept

Build

Usage

Understand Concept and Code Structure

● Fully comprehend the algorithm
● Spend time to map your understanding of the concept to the starter code

○ For both the system interface and individual modules, understand what data is transferred
between and how

● Charts and pseudocode can help A LOT!

5

Concept Build Usage

How is the System Physically Built?

Understand the simulator’s implementation (see simulator.go)
● The role of the simulator
● Methods it use to interact with the server module

Server 1

Server 3

Server 2

...

Simulator

StartSnapshot(server_id)

NotifySnapshotComplete
(server_id, snap_id)

CollectSnapshot
(snap_id)

6

Concept Build Usage

How is the System Physically Built?

Understand the server’s implementation (see server.go)
● Methods it uses to communicate with each other
● Methods it uses to take a local snapshot

Server 3

...

Simulator

StartSnapshot
(snap_id)

HandlePacket
(msg)

Server 2

HandlePacket
(msg)

Server 1

HandlePacket
(msg)

Tick()

SendTokens()

SendTokens()

SendTokens()

7

StartSnapshot
(snap_id)

StartSnapshot
(snap_id)

Concept Build Usage

How to Use the System?

Understand how the external environment talks to our system
(see test_common.go and snapshot_test.go)

Server 1

Server 3

Server 2

...

Simulator

Topology
File

Event File

InjectEvents()

Global Snapshot

8

Concept Build Usage

Iterative Design Process

9

Iterative Design Process

Common design methodology in product
design, including software design

You will understand a little more about your
design when you start implementing it.

● Start with the base case (aka simplest
case)

○ Example: one global snapshot at a time for
Assignment 2, distributed MapReduce
without any failure for Assignment 1.3

● Test regularly: should pass test case
for 2 nodes, then 3 nodes and …

● Add one more complexity at a time

Image Source from the Internet

10

Iterative Design Process: Distributed Snapshot

Key Idea: Start Simple, then Build Up

Phase 1: single snapshot at a time Phase 2: concurrent global snapshots

Simple design with
one snapshot at a
time

Implementation

Testing
Final design with
concurrent snapshots

Implementation

Testing

Done!☺

When passing all non-concurrent tests

11

Modular Programming

12

Modular Programming

Iterative design means code change every time when refining the design ☹
Modular programming

● Decompose the system into several independent modules/pieces
● Use a set of simple yet flexible APIs for intra-module communication

Advantages of modular programming

● Makes it easier to reason about and debug each component of your system
● Requires minimal change in the code

13

Modular Programming
State

Phase 1: single snapshot at a time

Divide our server module into 3 pieces:

Server Module

Helper Functions API

Execution Logic

func HandlePacket(...) {
 case TokenMessage:
 // Do something
 case MarkerMessage:
 ...
}

14

● Execution logic

● Server State

● A layer of helper functions

Goal: write a flexible layer of helper
functions

Modular Programming: Single Snapshot

State Helper Functions API

Execution Logic

func HandlePacket(...) {
 ...
}

// ID of the current snapshot
snapId: int (init to -1)

// State of the current snapshot
snapState: SnapshotState

// Track if each incoming channel has
seen a marker message (default to
false)
receivedMarker:
map(source channel, bool)

func HandlePacket(src, msg) {
 ...
 case TokenMessage:
 updateSnapshot(src, msg)
 // Also, update server’s local state
 case MarkerMessage:
 snap_id = getSnapId(msg)
 if firstMarkerMsg(snap_id) {
 StartSnapshot(snap_id)
 } else {
 setReceivedMarker(src)
 if receiveAllMarkers() {
 // Notify simulator of the completion
 }
}

func updateSnapshot(src, msg) {
 snapMsg = SnapshotMessage(src, msg)
 snapState.messages.append(snapMsg)
}

func setReceivedMarker(src) {
 receivedMarker[src] = true
}

func firstMarkerMsg(snap_id) {
 return snapId != snap_id
}

Func receiveAllMarkers() {
 return receivedMarker.size == inboundLinks.size
}

15

Modular Programming
State

Phase 2: concurrent snapshots

● Update the state variables and
helper functions’ implementation

● Keep the API and execution logic
unmodified (almost)

Server Module

Helper Functions API

Execution Logic

func HandlePacket(...) {
 case TokenMessage:
 // Do something
 case MarkerMessage:
 ...
}

16

Little change☺

Some change

Some change

Modular Programming: Concurrent Snapshots

State Helper Functions API

Execution Logic

func HandlePacket(...) {
 ...
}

// States of concurrent snapshots
// map snapshot ID to its state
snapStates: map(int, SnapshotState)

// For each snapshot, track if each
incoming channel has seen a marker
message (default to false)
receivedMarker:
map(int, map(source channel, bool))

func HandlePacket(src, msg) {
 ...
 case TokenMessage:
 for snap_id in snapStates.keys() {
 updateSnapshot(snap_id, src, msg)
 }
 // Also, update server’s local state
 case MarkerMessage:
 snap_id = getSnapId(msg)
 if firstMarkerMsg(snap_id) {
 StartSnapshot(snap_id)
 } else {
 setReceivedMarker(snap_id, src)
 if receiveAllMarkers(snap_id) {
 // Notify simulator of the completion
 }
}

func updateSnapshot(snap_id, src, msg) {
 snapMsg = SnapshotMessage(src, msg)
 snapStates[snap_id].messages.append(snapMsg)
}

func setReceivedMark(snap_id, src) {
 receivedMarker[snap_id][src] = true
}

func firstMarkerMsg(snap_id) {
 return (snap_id in snapStates.keys())
}

Func receiveAllMarkers(snap_id) {
 return receivedMarker[snap_id].size ==
inboundLinks.size
}

17

1. Update state variables

2. Update helper functions while keeping
most of its API intact

3. Minimal change on execution logic

Tips for Debugging

18

Tips on Debugging

● Start Early! (This is imperative for Assignment #4.)
● Commit your code to Git often and early, and every time when you pass a

new test (enable comparative debugging later if necessary)
● Have proper naming for variables and add comments in your code

○ Easier for both you and others to read and debug your code
● Take advantage of Go Playground if you are not familiar with any Go specifics
● Print statements are your friend!

19

https://play.golang.org/

Prints Are Your Friend ☺

● Always verify the behavior of your program! Sometimes, it may not align with
your expectation because of some hidden bugs.

● Track execution using printing statements to understand the code flow
○ Especially helpful in the early development of your design when the code complexity is not too

high
● Help catch errors in the early stage
● Example

○ In Assignment 2, we can print out the server state before and after HandlePacket() and
StartSnapshot() that you implement after each tick of the simulator

20

