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COS 418/518: Distributed Systems
Lecture 8

Wyatt Lloyd

Distributed Hash Tables
& Chord
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The lookup problem: locate the data
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What is a DHT (and why)?
• Distributed Hash Table: an abstraction of hash table in a distributed 

setting
key = hash(data)
lookup(key) à IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) à data

• Partitioning data in large-scale distributed systems
– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system
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Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

user user user….
upload download

System

App



• Decentralized: no central authority

• Scalable: low network traffic overhead 

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join
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DHT is expected to be



• Hashed values (integers) using the same hash function
– Key identifier = SHA-1(key)
– Node identifier = SHA-1(IP address)

• How does Chord partition data?
– i.e., map key IDs to node IDs

• Why hash key and address?
– Uniformly distributed in the ID space
– Hashed key à load balancing; hashed address à independent failure
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Chord identifiers



7

Consistent hashing [Karger ‘97] – data partition
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Consistent hashing [Karger ‘97] – data partition

Key is stored at its successor: node with next-higher ID
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Consistent hashing [Karger ‘97] – basic lookup
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Chord – finger tables
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Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1
O(logN) messages 

and hops!

Node 1



• A binary lookup tree rooted at every node  
– Threaded through other nodes' finger tables

• Better than arranging nodes in a single tree
– Every node acts as a root
• So there's no root hotspot
• No single point of failure
• But a lot more state in total
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Implication of finger tables



• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup
– N is the total number of nodes (peers)

• Scalable: O(log N) state per node

• Robust: survives massive failures
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Chord lookup algorithm properties
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Chord – node joining
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Chord – node joining
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Chord – node joining
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Chord – node joining
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Chord – node joining
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Chord – node joining
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Chord – node joining
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Chord – node joining
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Chord – failures and successor list
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Chord – failures and successor list
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Chord – failures and successor list
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Chord – failures and successor list
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Chord – failures and successor list
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Chord – failures and successor list
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DHash replicates blocks at r successors
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• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used in Amazon Dynamo and other 

systems

• Replication for high availability, efficient recovery

• Incremental scalability

– Peers join with capacity, CPU, network, etc. 

• Self-management: minimal configuration
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What DHTs got right


