
1

COS 418/518: Distributed Systems
Lecture 8

Wyatt Lloyd

Distributed Hash Tables
& Chord

2

The lookup problem: locate the data

N1

N2 N3

N6N5

Publisher (N4)

N7

?Internet

put(“HOD.mp4”,
[content])

get(“HOD.mp4”)

3

What is a DHT (and why)?
• Distributed Hash Table: an abstraction of hash table in a distributed

setting
key = hash(data)
lookup(key) à IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) à data

• Partitioning data in large-scale distributed systems
– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system

4

Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

user user user….
upload download

System

App

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

5

DHT is expected to be

• Hashed values (integers) using the same hash function
– Key identifier = SHA-1(key)
– Node identifier = SHA-1(IP address)

• How does Chord partition data?
– i.e., map key IDs to node IDs

• Why hash key and address?
– Uniformly distributed in the ID space
– Hashed key à load balancing; hashed address à independent failure

6

Chord identifiers

7

Consistent hashing [Karger ‘97] – data partition

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Identifiers/key space

8

Consistent hashing [Karger ‘97] – data partition

Key is stored at its successor: node with next-higher ID

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

9

Consistent hashing [Karger ‘97] – basic lookup

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Key 1 ?

At Node 1

Look up key 1

Successor
pointer

O(N) messages and
hops!

Identifiers/key space

11

Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

Separators

Key ranges

Successors
of separators

Identifiers/key space

12

Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1
O(logN) messages

and hops!

Node 1

• A binary lookup tree rooted at every node
– Threaded through other nodes' finger tables

• Better than arranging nodes in a single tree
– Every node acts as a root
• So there's no root hotspot
• No single point of failure
• But a lot more state in total

14

Implication of finger tables

• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup
– N is the total number of nodes (peers)

• Scalable: O(log N) state per node

• Robust: survives massive failures

15

Chord lookup algorithm properties

16

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Contact node

Lookup id 2Identifiers/key space

17

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your
successor = 3Identifiers/key space

18

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your
successor = 3

Moves key 2 to node 2

Identifiers/key space

19

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Periodic stabalization messages
from each node to its successor

maintain node positions

Identifiers/key space

20

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

21

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

22

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

23

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

24

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

25

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

26

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

Points to successor

27

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

Points to successor

Succ. of id 7
(Succ. Of node 6)

28

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5

7, [7,3), node 0,1

Look up key 1

r-nearest successors
(r = logN)

Points to successor

29

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look
up key 7?

r-nearest successors
(r = logN)

30

DHash replicates blocks at r successors

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look
up key 7?

r-nearest successors
(r = logN)

Key 7

Key 7

“Adjacent” nodes in
the ring may be far away

in the network
à Independent failures

• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used in Amazon Dynamo and other

systems

• Replication for high availability, efficient recovery

• Incremental scalability

– Peers join with capacity, CPU, network, etc.

• Self-management: minimal configuration

31

What DHTs got right

