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The lookup problem: locate the data
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What is a DHT (and why)?

. Di?;c_ributed Hash Table: an abstraction of hash table in a distributed
setting

key = hash(data)

lookup(key) > IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) —> data

 Partitioning data in large-scale distributed systems
— Tuples in a global database engine
— Data blocks in a global file system
— Files in a P2P file-sharing system



Cooperative storage with a DHT
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DHT is expected to be

* Decentralized: no central authority
« Scalable: low network traffic overhead
« Efficient: find items quickly (latency)

* Dynamic: nodes fail, new nodes join



Chord identifiers

« Hashed values (integers) using the same hash function
— Key identifier = SHA-1(key)
— Node identifier = SHA-1(IP address)

 How does Chord partition data?
—i.e., map key IDs to node IDs

 Why hash key and address?
— Uniformly distributed in the ID space
— Hashed key - load balancing; hashed address - independent failure



Consistent hashing [Karger ‘97] — data partition

Identifiers have m = 3 bits
Key space: [0, 23-1]
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Consistent hashing [Karger ‘97] — data partition

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

Stores key 1
@® Identifiers/key space

Node

Stores key 6 |@

Stores keys 4, @| Stores keys 2, 3




Consistent hashing [Karger ‘97] — basic lookup

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]
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Chord - finger tables

Identifiers have m = 3 bits

Key space: [0, 23-1] 2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5
@ Identifiers/key space , ! \
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Chord - finger tables

o ~

1, [1,2), node 1
2, [2,4), node 3

4, [4,0), node 5

Identifiers have m = 3 bits
Key space: [0, 23-1]

.
@® Identifiers/key space \ S P, e €
Node 3-bit\\ ode 1 :, [:,i), noge :
’ ’ ;, noae
®/6 |pspace\ 2 190

Each node keeps m states \ 5 '

Key space - m ranges via ]
k-1 d oM 1<=k<= \i/ 4, [4,5), node 5
(N+2*7) mo , 1<=K<=m 5, [5,7), node 5
7

, [7,3), node O

-

O(logN) messages
and hops!

- |

[Look up key 1




Implication of finger tables

A binary lookup tree rooted at every node
— Threaded through other nodes' finger tables

« Better than arranging nodes in a single tree
— Every node acts as a root
« So there's no root hotspot
* No single point of failure
« But a lot more state in total
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Chord lookup algorithm properties

* Interface: lookup(key) — IP address

« Efficient: O(log N) messages per lookup
— N is the total number of nodes (peers)

« Scalable: O(log N) state per node

 Robust: survives massive failures



Chord - node joining

Identifiers have m = 3 bits /_[Contact node}

Key space: [0, 23-1]
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Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

Your
successor = 3
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Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

Your
successor = 3

@® Identifiers/key space
Node

Node 2 is joining

@] Moves key 2 to node 2




Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

- Points to successor
- Points to predecessor
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Node 2 is joining

Periodic stabalization messages
o from each node to its successor

\:/ maintain node positions
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Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

- Points to successor
——> Points to predecessor
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Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

- Points to successor
——> Points to predecessor

@® Identifiers/key space
Node

Node 2 is joining




Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

- Points to successor
- Points to predecessor

Node 2 is joining
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Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

- Points to successor
——> Points to predecessor

Node 2 is joining
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Chord - failures and successor list

Identifiers have m = 3 bits

o ~

Key space: [0, 23-1]
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2, [2,4), node 3

4, [4,0), node 5
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Chord - failures and successor list

Identifiers have m = 3 bits (1, [1,2), node 1|
Key space: [0, 23-1] 2, [2,4), node 3
k4r [4,0), node 5
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Chord - failures and successor list

Identifiers have m = 3 bits
Key space: [0, 23-1]
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Node
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Chord - failures and successor list

1, [1,2), node 1
Key space: [0, 23-1] 2, [2,4), node 3

k4' [4,0), node 5
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Chord - failures and successor list
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1, [1,2), node 1
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Identifiers have m = 3 bits
Key space: [0, 23-1]
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Chord - failures and successor list

Identifiers have m = 3 bits
Key space: [0, 23-1]
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DHash replicates blocks at r successors

Identifiers have m = 3 bits
Key space: [0, 23-1]

——————————————————————————————————

“Adjacent” nodes in
the ring may be far away
in the network
- Independent failures
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What DHTs got right

Consistent hashing
— Elegant way to divide a workload across machines

— Very useful in clusters: actively used in Amazon Dynamo and other
systems

Replication for high availability, efficient recovery

Incremental scalability

— Peers join with capacity, CPU, network, etc.

Self-management: minimal configuration
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