Distributed Hash Tables
& Chord

A

COS 418/518: Distributed Systems
Lecture 8

Wyatt Lloyd

The lookup problem: locate the data

N N]

/ °

N, ” <—J7
Internet]

Publisher (N,)

put (“HOD.mp4"”, N5
[content])

What is a DHT (and why)?

. Di?;c_ributed Hash Table: an abstraction of hash table in a distributed
setting

key = hash(data)

lookup(key) > IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) —> data

 Partitioning data in large-scale distributed systems
— Tuples in a global database engine
— Data blocks in a global file system
— Files in a P2P file-sharing system

Cooperative storage with a DHT

user user e user

1

1

PR—
c
=2
o
Q
Q

D R—

download

put(key, data) get (key) data
Distributed hash table (DHash)

lookup(key) I node IP address
(Chord)

node node . node

System

DHT is expected to be

* Decentralized: no central authority
« Scalable: low network traffic overhead
« Efficient: find items quickly (latency)

* Dynamic: nodes fail, new nodes join

Chord identifiers

« Hashed values (integers) using the same hash function
— Key identifier = SHA-1(key)
— Node identifier = SHA-1(IP address)

 How does Chord partition data?
—i.e., map key IDs to node IDs

 Why hash key and address?
— Uniformly distributed in the ID space
— Hashed key - load balancing; hashed address - independent failure

Consistent hashing [Karger ‘97] — data partition

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

Consistent hashing [Karger ‘97] — data partition

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

Stores key 1
@® Identifiers/key space

Node

Stores key 6 |@

Stores keys 4, @| Stores keys 2, 3

Consistent hashing [Karger ‘97] — basic lookup

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@® Identifiers/key space
Node

Stores key 6

-5 Successor
pointer

Stores keys 4, 5 Q; @) Stores keys 2, 3

Look up key 1]

Chord - finger tables

Identifiers have m = 3 bits

Key space: [0, 23-1] 2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5
@ Identifiers/key space , ! \
J ‘ :
Node 3-bit ! ‘; \
®6 |Dspace 2 v ! v
\ Separators | Successors
of separators
Each node keeps m states 5 3 Key ranges

Key space - m ranges via [

(N+2%1) mod 2M, 1<=k<=m ~—

11

Chord - finger tables

o ~

1, [1,2), node 1
2, [2,4), node 3

4, [4,0), node 5

Identifiers have m = 3 bits
Key space: [0, 23-1]

.
@® Identifiers/key space \ S P, e €
Node 3-bit\\ ode 1 :, [:,i), noge :
’ ’ ;, noae
®/6 |pspace\ 2 190

Each node keeps m states \ 5 '

Key space - m ranges via]
k-1 d oM 1<=k<= \i/ 4, [4,5), node 5
(N+2*7) mo , 1<=K<=m 5, [5,7), node 5
7

, [7,3), node O

-

O(logN) messages
and hops!

- |

[Look up key 1

Implication of finger tables

A binary lookup tree rooted at every node
— Threaded through other nodes' finger tables

« Better than arranging nodes in a single tree
— Every node acts as a root
« So there's no root hotspot
* No single point of failure
« But a lot more state in total

14

Chord lookup algorithm properties

* Interface: lookup(key) — IP address

« Efficient: O(log N) messages per lookup
— N is the total number of nodes (peers)

« Scalable: O(log N) state per node

 Robust: survives massive failures

Chord - node joining

Identifiers have m = 3 bits /_[Contact node}

Key space: [0, 23-1]

@ Identifiers/key space 7 Lookup id 2]

Node 3'blt

\

Node 2 is joining

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

Your
successor = 3

@® Identifiers/key space
Node

Node 2 is joining

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

Your
successor = 3

@® Identifiers/key space
Node

Node 2 is joining

@] Moves key 2 to node 2

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

- Points to successor
- Points to predecessor

@® Identifiers/key space
Node

Node 2 is joining

Periodic stabalization messages
o from each node to its successor

\:/ maintain node positions

19

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

- Points to successor
——> Points to predecessor

@® Identifiers/key space
Node

Node 2 is joining

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

- Points to successor
——> Points to predecessor

@® Identifiers/key space
Node

Node 2 is joining

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

- Points to successor
- Points to predecessor

Node 2 is joining

22

Chord - node joining

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

- Points to successor
——> Points to predecessor

Node 2 is joining

23

Chord - failures and successor list

Identifiers have m = 3 bits

o ~

Key space: [0, 23-1]

@® Identifiers/key space
Node

1, [1,2), node 1
2, [2,4), node 3

4, [4,0), node 5

_
2, [2,3), node 3
3, [3,5), node 3
2 5, [5,1), node 5

[Look up

[
4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node O

-

key 1

24

Chord - failures and successor list

Identifiers have m = 3 bits (1, [1,2), node 1|
Key space: [0, 23-1] 2, [2,4), node 3
k4r [4,0), node 5

@® Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

[
\\\\\-ii——’///' 4, [4,5), node 5
~=:::::{5, [5,7), node 5

7, [7,3), no

-

[Look up key 1

Chord - failures and successor list

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

—) Points to successor

o ~

1, [1,2), node 1
2, [2,4), node 3

[Look up key 1

[
\:/ 4' [4,5), nOde 5
~=:::::{5, [5,7), node 5

k4' [4,0), node 5

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

7, [7,3), no

-

26

Chord - failures and successor list

1, [1,2), node 1
Key space: [0, 23-1] 2, [2,4), node 3

k4' [4,0), node 5
2, [2,3), node 3
3, [3,5), node 3
2 5, [5,1), node 5

I
\\\\‘—ii——”//' 4, [4,5), node 5
-t:::::[5r [5,7), node 5
7

Identifiers have m = 3 bits F }

@® Identifiers/key space
Node

—) Points to successor

, [7,3),|node O

[Look up key 1 Succ. of id 7
(Succ. Of node 6)

27

Chord - failures and successor list

o ~

1, [1,2), node 1
2, [2,4), node 3

4, [4,0), node 5

Identifiers have m = 3 bits
Key space: [0, 23-1]

_

@® Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3

5, [5,1), node 5

—) Points to successor

L r

4, [4,5), node 5
5, [5,7), node 5

=
||
o
Q
<

[7, 17,3), node 0,1

[Look up key lJ

28

Chord - failures and successor list

Identifiers have m = 3 bits
Key space: [0, 23-1]

@® Identifiers/key space
Node

=
||
o
Q
<

What if look
up key 7?

DHash replicates blocks at r successors

Identifiers have m = 3 bits
Key space: [0, 23-1]

——————————————————————————————————

“Adjacent” nodes in
the ring may be far away
in the network
- Independent failures

@® Identifiers/key space
Node

=
||
o
Q
<

What if look
up key 7?

What DHTs got right

Consistent hashing
— Elegant way to divide a workload across machines

— Very useful in clusters: actively used in Amazon Dynamo and other
systems

Replication for high availability, efficient recovery

Incremental scalability

— Peers join with capacity, CPU, network, etc.

Self-management: minimal configuration

31

