
Time 2: Totally Ordered
Multicast & Vector Clocks

COS 418/518: Distributed Systems
Lecture 6

Wyatt Lloyd

• A New York-based bank wants to make its transaction ledger database
resilient to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San
Francisco

2

• Replicate the database, keep one copy in sf, one in nyc
• Client sends reads to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed
in the same order at each copy

3

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

4

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

SF

a) Add Alice to Bank

b) Alice deposits $1000

NY

Physical time ↓

c) Remove Alice from Bank

e) Alice deposits $100

d) Re-add Alice to Bank

f) 1% interest payment

Q2) What are all the valid lamport
timestamp total orders of a—f?

Q1) What is bad about using
order a,b,d,c?

1. On receiving an update from client, broadcast to others (including yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct)

6

• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

✔ ✔✔

(Acksto self not shown here)
7

✘ P2 processes %

1. On receiving an update from client, broadcast to others (including yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every replica (including yourself)

only from head of queue

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Correct version)

9Why is this correct?

8

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

✔✔ ✔

(Acksto self not shown here)

$
1.1

✔

• Does totally-ordered multicast solve the problem of multi-site
replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

So, are we done?

10

Lamport Clocks Review
Q: a à b =>

Q: LC(a) < LC(b) =>

Q: a || b =>

LC(a) < LC(b)

b -/-> a (a à b or a || b)

nothing

• Lamport clock timestamps do not capture causality

• Given two timestamps C(a) and C(z), want to know whether
there’s a chain of events linking them:

a à b à ... à y à z

12

Lamport Clocks and Causality

• One integer can’t order events in more than one process

• So, a Vector Clock (VC) is a vector of integers, one entry for
each process in the entire distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally precede e

13

Vector clock: Introduction

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj

14

Vector clock: Update rules

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

15

Vector clock: Example

P1

a
b

c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

• Rule for comparing vector timestamps:
• V(a) = V(b) when ak = bk for all k
• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:
• V(a) || V(b) if ai < bi and aj > bj, some i, j

16

Comparing vector timestamps

• V(w) < V(z) then there is a chain of events linked by
Happens-Before (à) between a and z

• V(a) || V(w) then there is no such chain of events between a and w

17

Vector clocks capture causality

x

y

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,0,1]a

• Rule for comparing vector timestamps:
• V(a) = V(b) when ak = bk for all k

• They are the same event
• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• a à b

• Concurrency:
• V(a) || V(b) if ai < bi and aj > bj, some i, j

• a || b

18

Comparing vector timestamps

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
Conclusion: a à z

19

Vector clock timestamps precisely capture
happens-before relation (potential causality)

