
Impossibility Results:
CAP, PRAM, SNOW, PORT, & FLP

COS 418/518: Distributed Systems
Lecture 19

Wyatt Lloyd

Network Partitions Divide Systems

Network Partitions Divide Systems

How Can We Handle Partitions?
• Atomic Multicast?
• Bayou?
• Paxos?
• RAFT?
• COPS?
• Spanner?

How About This Set of
Partitions?

Fundamental Tradeoff?
• Replicas appear to be a single machine,

but lose availability during a network partition

• OR

• All replicas remain available during a network
partition but do not appear to be a single machine

CAP Theorem Preview
• You cannot achieve all three of:

1. Consistency
2. Availability
3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen
• Availability => All Sides of Partition Continue
• Consistency => Replicas Act Like Single Machine
• Specifically, Linearizability

Linearizability (refresher)
• All replicas execute operations in some total order

• That total order preserves the real-time ordering
between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins,

then there is no real-time order
• (But there must be some total order)

CAP Conjecture [Brewer 00]

• From keynote lecture by Eric Brewer (2000)
• History: Eric started Inktomi, early Internet search site

based around “commodity” clusters of computers

• Using CAP to justify “BASE” model: Basically
Available, Soft-state services with Eventual
consistency

• Popular interpretation: 2-out-of-3
• Consistency (Linearizability)
• Availability
• Partition Tolerance: Arbitrary crash/network failures

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 2

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 2

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 2

r(x)

x=0

Read begins after write completes
Read eventually returns (from A)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 2

r(x)

x=0

Read begins after write completes
Read eventually returns (from A)

Not consistent (C) => contradiction!

CAP Interpretation Part 1
• Cannot “choose” no partitions
• 2-out-of-3 interpretation doesn’t make sense
• Instead, availability OR consistency?

• i.e., fundamental tradeoff between availability and
consistency
• When designing system must choose one or the other,

both are not possible

CAP Interpretation Part 2
• It is a theorem, with a proof, that you understand!

• Cannot “beat” CAP Theorem

• Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner

CAP

Impossibility Results Useful!!!!
• Fundamental tradeoff in design space
• Must make a choice

• Avoids wasting effort trying to achieve the
impossible

• Tells us the best-possible systems we can build!

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• d is the worst-case delay in the network over all pairs
of processes [datacenters]

• Sequentially consistent system

• read time + write time ≥ d

• Fundamental tradeoff between consistency and
latency!

• (Skipping proof, see presenter notes or papers)

20

PRAM Theorem:
Impossible for sequentially consistent
system to always provide low latency.

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner

CAP
PRAM 1988
(Princeton)

Sharding vs. Replication

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

22

CAP PRAM

SNOW

The SNOW Theorem [Lu et al. 2016]

• Focus on read-only transactions

• Are the ‘ideal’ read-only transaction possible?
• Provide the strongest guarantees
• AND
• Provide the lowest possible latency?

• (Same as eventual consistent non-transactional reads)

• No L

The SNOW Properties

[S]trict serializability

[N]on-blocking operations

[O]ne response per read

[W]rite transactions that conflict

24

Strongest
Guarantees

Lowest
Latency

[S]trict Serializability
• Strongest model: real-time + total order

25

CR SACL SPhoto CW

ACL := Private
Upload Photo B

W starts

W finishes

Private

Photo B

R starts

R finishes

“Photo B is
private!”

[S]trict Serializability
• Strongest model: real-time + total order

26

CR SACL SPhoto CW

ACL := Private
Upload Photo B

W starts

W finishes

Private

Photo B
R starts

R finishes

“Public + Photo A”
“Photo B is private!”

“Public + Photo B”
“Photo A is private!”

[N]on-blocking Operations
• Do not wait on external events
• Locks, timeouts, messages, etc.

• Lower latency
• Save the time spent blocking

27

[O]ne Response
• One round-trip
• No message redirection

• Centralized components: coordinator, etc.
• No retries
• Save the time for extra round-trips

• One value per response
• Less time for transmitting, marshaling, etc.

28

[W]rite Transactions That Conflict
• Compatible with write transactions
• Richer system model
• Easier to program

• Spanner has W
• COPS does not have W

29

30

The SNOW Theorem:
Impossible for read-only transaction

algorithms to have all SNOW properties

Must choose strongest guarantees OR
lowest latency for read-only transactions

Why SNOW Is Impossible [Intuition]

31

CWSA SBCR

W
visible

RA = new
RB = old

W finishes

W
invisible

W starts
A := new
B := new

R

T

Assume
SNOW à

Violates
property S

SNOW Is Tight

32

Spanner’s read-only transaction
interfaces provide both sides of tradeoff!

S

N

O

W

: COPS-DW

: Eiger

: Spanner-RO

: Spanner-Snap

S+N+O

S+N+W

S+O+W

N+O+W

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner

CAP
PRAM

SNOW

Latency vs. Throughput
• Latency: How long operations take
– All results so far about latency/availability

• Throughput: How many operations/sec

34

35

The NOCS Theorem [Lu et al. 2020]

• Focus on read-only transaction’s latency and
throughput

• Are the ‘ideal’ read-only transaction possible?
– Provide the strongest guarantees
– AND
– Provide the lowest possible latency?
– AND
– Provide the highest possible throughput?

• No L

The NOCS Properties

[N]on-blocking operations

[O]ne response per read

[C]onstant metadata

[S]trict serializability

36

Same
As
Simple
Reads

37

The NOCS Theorem:
Impossible for read-only transaction

algorithms to have all NOCS properties

Must choose strongest consistency OR
best performance for read-only transactions

• No deterministic
1-crash-robust
consensus
algorithm exists
with asynchronous
communication

38

“FLP” Result

FLP is the original impossibility
result for distributed systems!

• Useful interpretation: no consensus
algorithm can always reach consensus
with an asynchronous network
– Do not believe such claims!

• Led to lots and lots of theoretical work
– (Consensus is possible when the network is

reasonably well-behaved)

39

Conclusion
• Impossibility results tell you choices you must make in the

design of your systems

• CAP: Fundamental tradeoff between availability and strong
consistency (for replication)

• PRAM: Fundamental tradeoff between latency and strong
consistency (for replication)

• SNOW: Fundamental tradeoff between latency and strong
guarantees (for sharding)

• NOCS: Fundamental tradeoff between performance (latency
and throughput) and strong guarantees (for sharding)

40

