Impossibility Results:
CAP, PRAM, SNOW, PORT, & FLP

1 VET | NOV h
TES | TAM
Al EN | TVM |}

COS 418/518: Distributed Systems
Lecture 19

Wyatt Lloyd

Network Partitions Divide Systems

H—N

\ \
X m‘/

Network Partitions Divide Systems

How Can We Handle Partitions?

» Atomic Multicast?
* Bayou?

» Paxos?

« RAFT?

« COPS?

» Spanner?

How About This Set of
Partitions?

.

Fundamental Tradeoff?

* Replicas appear to be a

but during a network partltlon
* OR
* All replicas during a network

partition but

CAP Theorem Preview

* You cannot achieve all three of:

1. Consistency
2. Availability
3. Partition-Tolerance

 Partition Tolerance => Partitions Can Happen
* Availability => All Sides of Partition Continue

» Consistency => Replicas Act Like Single Machine
« Specifically,

Linearizability (refresher)

* All replicas execute operations in total order

* That total order preserves the
between operations

* If operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

» (But there must be some total order)

CAP Conjecture [Brewer 00]

* From keynote lecture by Eric Brewer (2000)

 History: Eric started Inktomi, early Internet search site
based around “commodity” clusters of computers

« Using CAP to justify “BASE” model: Basically
Available, Soft-state services with Eventual
consistency

* Popular interpretation: 2-out-of-3
» Consistency (Linearizability)
 Availability
 Partition Tolerance: Arbitrary crash/network failures

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

e SRR

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

=8 | B (=

{ Client 1

Write eventually returns
(from A)

Partition Possible (from P)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

w(x=1) ~ E r(x)
:qq - q :{ Client 2 J
ok = -

Client 1

Write eventually returns Read eventually returns (from A)

\ Read begins after write completes
(from A) T

Partition Possible (from P)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Not consistent (C) => contradiction! Il

wix=1) — - : — rix
4_0;('___'q3 ; EJ‘:O—_;{ Client 2 J

{ Client 1

Write eventually returns Read eventually returns (from A)

\ Read begins after write completes
(from A) T

Partition Possible (from P)

CAP Interpretation Part 1

« Cannot “choose” no partitions
« 2-out-of-3 interpretation doesn’t make sense
* Instead, availability OR consistency?

* I.e., fundamental tradeoff between availability and
consistency

* When designing system must choose one or the other,
both are not possible

CAP Interpretation Part 2

* It is a theorem, with a proof, that you understand!
 Cannot “beat” CAP Theorem

» Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT
....... ;... CAP

Sequential Consistency

l

Causal+ Consistency e.g., Bayou

'

Eventual Consistency e.g., Dynamo

Impossibility Results Useful!l!!

 Fundamental tradeoff in design space
 Must make a choice

* Avoids wasting effort trying to achieve the
Impossible

* Tells us the best-possible systems we can build!

P RAM [Lipton Sandberg 88] [Attiya Welch 94]

* d is the worst-case delay in the network over all pairs
of processes [datacenters]

« Sequentially consistent system
* read time + write time > d

 Fundamental tradeoff between consistency and
latency!

* (Skipping proof, see presenter notes or papers)

PRAM Theorem:

Impossible for sequentially consistent
system to always provide low latency.

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT

'

Sequential Consistency

....... 1... CAP

Causal+ Consistency e.g., Bayou

'

Eventual Consistency e.g., Dynamo

Sharding vs. Replication

CAP PRAM
Replication Dimension
———————————————————
| A-El <
Sharding <D «m
Dimension s «a&
Show < <

The SNOW Theorem [Lu et al. 2016]

* Focus on read-only transactions

 Are the ‘ideal’ read-only transaction possible?

* Provide the strongest guarantees
« AND

* Provide the lowest possible latency?
* (Same as eventual consistent non-transactional reads)

* No ®

The SNOW Properties

[S]trict serializability

Strongest
[N]Jon-blocking operations Guarantees
[O]ne response per read

Lowest

[W]rite transactions that conflict Latency

[S]trict Serializability

« Strongest model: real-time + total order

Cn Swi Seno Cw
R S—

“Photo B is
private!”

R starts -

R finishes =

Private

= — W starts

—

Photo B

ACL := Private
Upload Photo B

= W finishes

25

[S]trict Serializability

« Strongest model: real-time + total order

G Swci Seno [Cw
g

- W starts

R starts -

Photo B

{ACL = Private

uPuinc + PhOtO Au Up|Oad PhOtO B

“Photo B is private!”

Private

“Public & Photo B”
“Phote A'is'private!”

= W finishes
R finishes =

26

[N]Jon-blocking Operations

Do not wait on external events
* Locks, timeouts, messages, etc.

* Lower latency
« Save the time spent blocking

[O]ne Response

* One round-trip

 No message redirection
» Centralized components: coordinator, etc.

* No retries
« Save the time for extra round-trips

* One value per response
» Less time for transmitting, marshaling, etc.

[W]rite Transactions That Conflict

« Compatible with write transactions
* Richer system model
 Easier to program

« Spanner has W
« COPS does not have W

The SNOW Theorem:

Impossible for read-only transaction
algorithms to have all SNOW properties

Must choose strongest guarantees OR
lowest latency for read-only transactions

Why SNOW Is |mpOSSib|e [Intuition]

Assume
SNOW

A = new

B := hew
Violates
property S

k24

W starts

W finishes

31

SNOW Is Tight

S » S+N+O: COPS-DW

N S+N+W: Eiger

O S+0+W: Spanner-RO
W N+O+W: Spanner-Snap

Spanner’s read-only transaction
Interfaces provide both sides of tradeoff!

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT

'

Sequential Consistency

....... 1... CAP

Causal+ Consistency e.g., Bayou

'

Eventual Consistency e.g., Dynamo

Latency vs. Throughput

« Latency: How long operations take
— All results so far about latency/availability

* Throughput: How many operations/sec

The NOCS Theorem [Lu et al. 2020]

* Focus on read-only transaction’s latency and
throughput

* Are the ‘ideal’ read-only transaction possible?
— Provide the strongest guarantees

— AND
— Provide the lowest possible latency?

— AND
— Provide the highest possible throughput?

c No®

The NOCS Properties

\

[N]Jon-blocking operations
Same
As
[O]ne response per read > Simple
Reads
[Clonstant metadata y

[S]trict serializability

The NOCS Theorem:

Impossible for read-only transaction
algorithms to have all NOCS properties

Must choose strongest consistency OR
best performance for read-only transactions

“FLP”

No deterministic
1-crash-robust
CONSensus
algorithm exists
with asynchronous
communication

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND
MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture,; C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management): Systems-distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

FLP is the original impossibility
result for distributed systems!

* Useful interpretation: no consensus
algorithm can always reach consensus

with an asynchronous network
— Do not believe such claims!

 Led to lots and lots of theoretical work

— (Consensus is possible when the network is
reasonably well-behaved)

Conclusion

Impossibility results tell you choices you must make in the
design of your systems

CAP: Fundamental tradeoff between availability and strong
consistency (for replication)

PRAM: Fundamental tradeoff between latency and strong
consistency (for replication)

SNOW: Fundamental tradeoff between latency and strong
guarantees (for sharding)

NOCS: Fundamental tradeoff between performance (latency
and throughput) and strong guarantees (for sharding)

