Spanner

Part ||

COS 418: Distributed Systems
Lecture 18

Jeffrey Helt

Slides adapted from Haonan Lu, Wyatt Lloyd, and Mike Freedman’s, which are adapted from the Spanner OSDI talk

Recap: Spanner Is Strictly Serializable

« Efficient read-only transactions in strictly serializable
systems
« Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)
 Efficient RO txns - good system overall performance

Recap: Ideas Behind Read-Only Txns

« Tag writes with physical timestamps upon commit
« Write txns are strictly serializable, e.g., 2PL

« Read-only txns return the writes whose commit
timestamps precede its timestamp

RO txns are one-round, lock-free, and never abort

Recap: TrueTime

* Timestamping writes must enforce the invariant

 If T2 starts after T1 commits (finishes), then T2 must have a
larger timestamp

* TrueTime: partially-synchronized clock abstraction
« Bounded clock skew (uncertainty)
* TT.now() = [earliest, latest]; earliest <= T_, . <= latest
« Uncertainty (€) is kept short

* TrueTime enforces the invariant by
« Use at least TT.now().latest for timestamps
« Commit wait

Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp

Let T1 write Sg and T2 write S, TT.after(15)

oy b <X
== true

S, £ >

3 8 1516 / 20
Tabs X ,i r A >
\ P N 17
N o7 watt Aif
Sg —: ¢ >

T1.now6 T1.commit
=[3, 15] (ts = 15)
b TrueTime

Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write Sg and T2 write S,

T2.now() T2.commit
=[18, 22] (ts :.22)

SA ,'?\ >
/ : Yo
3 5 8 1516 , 20 °
T ‘(\. x >
abs k\ : //i k\l /), 22
\\: ,’/ngt\\‘y //

S, o—= o >

T1.now() T1.commit

— [3’ 15] (tS — 15) T2ts >T1.ts

TrueTime

After-class Puzzles

* What's the rule of thumb for choosing ts?
At least T, then at least TT.now().latest

« Can we use TT.now().earliest for ts?
« Can we use TT.now().latest — 1 for ts?

« Can we use TT.now().latest + 1 for ts?

This Lecture

* What is the read-write transaction protocol?
« 2PL + 2PC
 How are they timestamped?

* What is the read-only transaction protocol?
 How are read timestamps chosen?
* How are reads executed?

Read-Write Transactions (2PL)

* Three phases

= 0o ‘b’

Execute - Prepare - Commit

\ J
|

2PC: atomicity

Read-Write Transactions (2PL)

Execute |

. T —a '
Client | \/A, a; >
Al 5 >

O R(A) !
B | E >
C I >

Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C="?+1)}

Execute:

* Does reads: grab read locks and return the most recent data, e.g., R(A=a)
« Client computes and buffers writes locally, e.g., A=a+1, B=a+1, C=a+l

Read-Write Transactions (2PL)

Execute | Prepare :
| T A=a :
Client | , . <
: ok :
Coord. > A | : : >
G R(A) ! \ B Recv W(a+1)/7 !
Par. > B | : Log Prepare E >
! \ B Recv W(a+1) / !
Par. > C : E Log Prepare : >
' 8 Recv W(a+1) '
Prepare:

« Choose a coordinator, e.g., A, others are participants
« Send buffered writes and the identity of the coordinator; grab write locks

« Each participant prepares T by logging a prepare record via Paxos with its replicas.
Coord skips prepare (Paxos Logging)

« Participants send OK to the coord if lock grabbed and after Paxos logging is done
11

Read-Write Transactions (2PL)

Execute | Prepare : Commit
. T A=a '
Client | ' >
I
' acC
Coord. > A | 5 : a C;‘;?mt bb l‘
R(A) ! Recv W(a+1 !
(A) ! \ @+l) :ApplyW(a+1)§; Log
Par. > B : | Log Prepare : Commit
; B Recv W(a+1) / ! & Apply W(a 1)%
Par. > C | E Log Prepare ' Log
' ﬁ Recv W(a+1) commit
Apply W(a+1)rh
Commit:

« After hearing from all participants, coord commits T if all OK; otherwise, abort T

» Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks
» Coord sends commit/abort messages to participants

« Participants log commit/abort via Paxos, apply writes if commit, release locks

« Coord sends result to client either after its “log commit” or after ack
12

Timestamping Read-Write Transactions

Execute | Prepare : Commit
| |
. T ! !
Client | ; >
I ok | Commit _){
! Co] Wait
! tSg, tse ! ac
Coord. > A : — Log bb l&
G ! \ ﬁ ! Commit
: : ;; Log
Lo ! T.ts =ts .
Par. > B | | Prepgre : - Commit
| B sy / ! & Tis=ts, | ‘b
| |
Par. > C | ' Log : Log
8 tS Prepare) Commit
C _
Timestamping: Tts =15, fh

+ Participant: choose a timestamp, e.g., tsg and ts., larger than any writes it has applied

+ Coordinator: choose a timestamp, e.g., ts,, larger than
Any writes it has applied
Any timestamps proposed by the participants, e.g., tsg and ts.
* Its current TT.now().latest

« Coord commit-waits: TT.after(ts,) == true. Commit-wait overlaps with Paxos logging
* ts,is T's commit timestamp 13

Read-Only Transactions (TM part)

Client |

0 310 ~I5
Txn T’ = R(A=?, B=?, C=?) Wait

« Client chooses a read timestamp ts = TT.now().latest

* If no prepared write, return the preceding write, e.g., on shard A

« If write prepared with ts’ > ts, don’t wait, proceed with read, e.g., B
* |f write prepared with ts’ < ts, wait until write commits, e.g., C

Read-Only Transactions (Paxos part)

T,
Client | : 2 >
ts=1
0 chm/_ >
s |

W

A
() |

B V:Vo WgPaxos: W§Paxos >
0 |
\A/ |

C ! >
0 10

Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W, is applied before W,

T’ needs to wait until there exists a Paxos write with ts >= 10, e.g., W3, so alll
writes before 10 are finalized

Put it together: a shard can process a read at ts if ts <=t

t Paxos

sate = MIn(tL2X0S £ TM 5 - all writes with timestamps <= t,;, have been applied

A Puzzle to Help With Understanding

« Assume no replication, only transaction managers

™XNT={W,, W}, T=R (A, C)
T’

. W W
Client | 2 -
{s
A '
0 ts /
B 1o
0
W Weprep Wemt
C : :
0 tSprep tScmt:8

T’ sees partial effect of T! Sees W but not W, so violates atomicity!

A Puzzle to Help With Understanding

» Solution 1: uncertainty-wait

T Walt
. W
Client —e >
ts=10
WO
Al >
0
WO
B | >
0
W WCprep WCcmt
C ! :

Uncertainty-wait ensures that ts_,, must > T’ ts because
« T prepares after T' “commits,” and
« T waits out uncertainty before “commit”, e.g., TT.after(10) == true

A Puzzle to Help With Understanding

« Solution 2: RO advances next RW prepare ts

T,
. W
Client | : We >
ts= /‘

AR >
0 ts /

B V:VO >
0

c W, W(I;prep W(I:cmt .
1 | |
0 ts ts. .>10

prep

Ensures that ts_,, must > T’ ts because
T prepares after T' reads at A and
Shard A will choose ts.., >ts . for T

prep next

cmt

Less blocking for RO txns!
This is what Spanner does!

18

Serializable Snapshot Reads

 Client specifies a read timestamp way in the past
e e.g., one hour ago

« Read shards at the stale timestamp

 Serializable
 Old timestamp cannot ensure real-time order

 Better performance
» Always non-blocking, not just lock-free

« Can we have this performance but still strictly serializable?
* e.g., one-round, non-blocking, and strictly serializable
« Coming in next lecture!

Takeaways

« Strictly serializable (externally consistent)
 Make it easy for developers to build apps!

« Reads dominant, make them efficient
 One-round, lock-free
 Must block in some cases

» TrueTime exposes clock uncertainty

« Commit wait and at least TT.now.latest() for timestamps
ensure real-time ordering

 Globally-distributed database
e 2PL w/ 2PC over Paxos!

