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• Efficient read-only transactions in strictly serializable 
systems

• Strict serializability is desirable but costly!

• Reads are prevalent! (340x more than write txns)

• Efficient RO txns → good system overall performance
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Recap: Spanner is Strictly Serializable



• Tag writes with physical timestamps upon commit
• Write txns are strictly serializable, e.g., 2PL

• Read-only txns return the writes whose commit 
timestamps precede its timestamp

• RO txns are one-round, lock-free, and never abort
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Recap: Ideas Behind Read-Only Txns



• Timestamping writes must enforce the invariant
• If T2 starts after T1 commits (finishes), then T2 must have a 

larger timestamp

• TrueTime: partially-synchronized clock abstraction
• Bounded clock skew (uncertainty)

• TT.now() → [earliest, latest]; earliest <= Tabs <= latest

• Uncertainty (ε) is kept short

• TrueTime enforces the invariant by
• Use at least TT.now().latest for timestamps

• Commit wait
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Recap: TrueTime
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Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp

Let T1 write SB and T2 write SA

Tabs
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SB

TrueTime

T1.now()

= [3, 15]

T1.commit

(ts = 15)
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wait

TT.after(15) 
== true

b

x

b < x
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Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp

Let T1 write SB and T2 write SA

Tabs
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TrueTime

T1.now()

= [3, 15]

T1.commit

(ts = 15)
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T2.now()

= [18, 22]

T2.commit

(ts = 22)
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T2.ts > T1.ts

3
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wait
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After-class Puzzles

• What’s the rule of thumb for choosing ts?
• At least Tabs, then at least TT.now().latest

• Can we use TT.now().earliest for ts? 

• Can we use TT.now().latest – 1 for ts? 

• Can we use TT.now().latest + 1 for ts? 



• What is the read-write transaction protocol?
• 2PL + 2PC

• How are they timestamped?

• What is the read-only transaction protocol?
• How are read timestamps chosen?

• How are reads executed?
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This Lecture



• Three phases

Execute  → Prepare  → Commit
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Read-Write Transactions (2PL)

2PC: atomicity



Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}

Execute: 

• Does reads: grab read locks and return the most recent data, e.g., R(A=a)

• Client computes and buffers writes locally, e.g., A = a+1, B = a+1, C = a+1
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Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a

Execute

Client



Prepare: 

• Choose a coordinator, e.g., A, others are participants

• Send buffered writes and the identity of the coordinator; grab write locks

• Each participant prepares T by logging a prepare record via Paxos with its replicas. 
Coord skips prepare (Paxos Logging) 

• Participants send OK to the coord if lock grabbed and after Paxos logging is done
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Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a

Coord. →

Par. →

Par. →

ok

Recv W(a+1)

Recv W(a+1)

Recv W(a+1)

Log Prepare

Log Prepare

Execute Prepare

Client



Commit: 

• After hearing from all participants, coord commits T if all OK; otherwise, abort T 

• Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks

• Coord sends commit/abort messages to participants

• Participants log commit/abort via Paxos, apply writes if commit, release locks

• Coord sends result to client either after its “log commit” or after ack 
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Read-Write Transactions (2PL)
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Commit
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Timestamping: 

• Participant: choose a timestamp, e.g., tsB and tsC, larger than any writes it has applied

• Coordinator: choose a timestamp, e.g., tsA, larger than
• Any writes it has applied

• Any timestamps proposed by the participants, e.g., tsB and tsC

• Its current TT.now().latest

• Coord commit-waits: TT.after(tsA) == true. Commit-wait overlaps with Paxos logging

• tsA is T’s commit timestamp 13

Timestamping Read-Write Transactions

Client
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• Client chooses a read timestamp ts = TT.now().latest

• If no prepared write, return the preceding write, e.g., on shard A

• If write prepared with ts’ > ts, don’t wait, proceed with read, e.g., B

• If write prepared with ts’ < ts, wait until write commits, e.g., C 14

Read-Only Transactions (TM part)
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Txn T’ = R(A=?, B=?, C=?)
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• Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied 
earlier, W2 is applied before W3

• T’ needs to wait until there exists a Paxos write with ts >= 10, e.g., W3, so all 
writes before 10 are finalized

• Put it together: a shard can process a read at ts if ts <= tsafe

• tsafe = min(tsafe
Paxos, tsafe

TM ) ; all writes with timestamps <= tsafe have been applied
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Read-Only Transactions (Paxos part)
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• Assume no replication, only transaction managers
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A Puzzle to Help With Understanding

A
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C

T’

0

0

0

Client
ts=10

W0

W0

W0

T’ sees partial effect of T! Sees WC but not WA so violates atomicity!

WAcmt

tscmt=8tsprep

WAprep

WCcmt

tscmt=8tsprep

WCprep

W0 WC

Txn T = {WA, WC}, T’ = R (A, C)



• Solution 1: uncertainty-wait
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ts=10

Wait

W0

W0

W0

“commit”

tsprep

WAprep WAcmt

tscmt>10

Uncertainty-wait ensures that tscmt must > T’ ts because

• T prepares after T’ “commits,” and

• T’ waits out uncertainty before “commit”, e.g., TT.after(10) == true

A Puzzle to Help With Understanding

WCcmt

tscmt>10tsprep

WCprep

W0W0



• Solution 2: RO advances next RW prepare ts
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Ensures that tscmt must > T’ ts because

• T prepares after T’ reads at A and

• Shard A will choose tsprep > tsnext for T

A Puzzle to Help With Understanding
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Less blocking for RO txns!
This is what Spanner does!



• Client specifies a read timestamp way in the past
• e.g., one hour ago

• Read shards at the stale timestamp

• Serializable
• Old timestamp cannot ensure real-time order

• Better performance
• Always non-blocking, not just lock-free

• Can we have this performance but still strictly serializable?
• e.g., one-round, non-blocking, and strictly serializable
• Coming in next lecture!
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Serializable Snapshot Reads



Takeaways

• Strictly serializable (externally consistent)
• Make it easy for developers to build apps!

• Reads dominant, make them efficient
• One-round, lock-free
• Must block in some cases

• TrueTime exposes clock uncertainty
• Commit wait and at least TT.now.latest() for timestamps 

ensure real-time ordering

• Globally-distributed database
• 2PL w/ 2PC over Paxos!


