
Spanner
Part II

COS 418: Distributed Systems

Lecture 18

Jeffrey Helt

Slides adapted from Haonan Lu, Wyatt Lloyd, and Mike Freedman’s, which are adapted from the Spanner OSDI talk

• Efficient read-only transactions in strictly serializable
systems

• Strict serializability is desirable but costly!

• Reads are prevalent! (340x more than write txns)

• Efficient RO txns → good system overall performance

2

Recap: Spanner is Strictly Serializable

• Tag writes with physical timestamps upon commit
• Write txns are strictly serializable, e.g., 2PL

• Read-only txns return the writes whose commit
timestamps precede its timestamp

• RO txns are one-round, lock-free, and never abort

3

Recap: Ideas Behind Read-Only Txns

• Timestamping writes must enforce the invariant
• If T2 starts after T1 commits (finishes), then T2 must have a

larger timestamp

• TrueTime: partially-synchronized clock abstraction
• Bounded clock skew (uncertainty)

• TT.now() → [earliest, latest]; earliest <= Tabs <= latest

• Uncertainty (ε) is kept short

• TrueTime enforces the invariant by
• Use at least TT.now().latest for timestamps

• Commit wait

4

Recap: TrueTime

5

Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp

Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()

= [3, 15]

T1.commit

(ts = 15)

8 20153 16

wait

TT.after(15)
== true

b

x

b < x

6

Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp

Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()

= [3, 15]

T1.commit

(ts = 15)

8 20

T2.now()

= [18, 22]

T2.commit

(ts = 22)

15

T2.ts > T1.ts

3

22

16

18
wait

x y
5

After-class Puzzles

• What’s the rule of thumb for choosing ts?
• At least Tabs, then at least TT.now().latest

• Can we use TT.now().earliest for ts?

• Can we use TT.now().latest – 1 for ts?

• Can we use TT.now().latest + 1 for ts?

• What is the read-write transaction protocol?
• 2PL + 2PC

• How are they timestamped?

• What is the read-only transaction protocol?
• How are read timestamps chosen?

• How are reads executed?

8

This Lecture

• Three phases

Execute → Prepare → Commit

9

Read-Write Transactions (2PL)

2PC: atomicity

Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}

Execute:

• Does reads: grab read locks and return the most recent data, e.g., R(A=a)

• Client computes and buffers writes locally, e.g., A = a+1, B = a+1, C = a+1

10

Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a

Execute

Client

Prepare:

• Choose a coordinator, e.g., A, others are participants

• Send buffered writes and the identity of the coordinator; grab write locks

• Each participant prepares T by logging a prepare record via Paxos with its replicas.
Coord skips prepare (Paxos Logging)

• Participants send OK to the coord if lock grabbed and after Paxos logging is done

11

Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a

Coord. →

Par. →

Par. →

ok

Recv W(a+1)

Recv W(a+1)

Recv W(a+1)

Log Prepare

Log Prepare

Execute Prepare

Client

Commit:

• After hearing from all participants, coord commits T if all OK; otherwise, abort T

• Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks

• Coord sends commit/abort messages to participants

• Participants log commit/abort via Paxos, apply writes if commit, release locks

• Coord sends result to client either after its “log commit” or after ack

12

Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a

Execute

Coord. →

Par. →

Par. →

ok

Prepare

Recv W(a+1)

Recv W(a+1)

Recv W(a+1)

Log Prepare

Log Prepare

Log

Commit

Log

Commit

Log

Commit

Apply W(a+1)

Apply W(a+1)

Commit

Apply W(a+1)

ack

Client

Timestamping:

• Participant: choose a timestamp, e.g., tsB and tsC, larger than any writes it has applied

• Coordinator: choose a timestamp, e.g., tsA, larger than
• Any writes it has applied

• Any timestamps proposed by the participants, e.g., tsB and tsC

• Its current TT.now().latest

• Coord commit-waits: TT.after(tsA) == true. Commit-wait overlaps with Paxos logging

• tsA is T’s commit timestamp 13

Timestamping Read-Write Transactions

Client

A

B

C

T

Execute

Coord. →

Par. →

Par. →

ok,

tsB, tsC

Prepare

Log

Prepare

Log

Prepare

Log

Commit
Log

Commit

Log

Commit

Commit

ack

tsB

tsC

tsA

Commit

Wait

T.ts = tsA

T.ts = tsA

T.ts = tsA

• Client chooses a read timestamp ts = TT.now().latest

• If no prepared write, return the preceding write, e.g., on shard A

• If write prepared with ts’ > ts, don’t wait, proceed with read, e.g., B

• If write prepared with ts’ < ts, wait until write commits, e.g., C 14

Read-Only Transactions (TM part)

A

B

C

0

0

0

Txn T’ = R(A=?, B=?, C=?)

Client
T’

ts=10

5

W1cmt

12

W2prep

W0

W0

W0

8

W3prep

10

W1 W0
W0

W3cmt

15

Wait

• Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W2 is applied before W3

• T’ needs to wait until there exists a Paxos write with ts >= 10, e.g., W3, so all
writes before 10 are finalized

• Put it together: a shard can process a read at ts if ts <= tsafe

• tsafe = min(tsafe
Paxos, tsafe

TM) ; all writes with timestamps <= tsafe have been applied
15

Read-Only Transactions (Paxos part)

A

B

C

0

0

0

Client
T’

ts=10

5

W1cmtW0

W0

W0

10

W2

W2Paxos W3Paxos

• Assume no replication, only transaction managers

16

A Puzzle to Help With Understanding

A

B

C

T’

0

0

0

Client
ts=10

W0

W0

W0

T’ sees partial effect of T! Sees WC but not WA so violates atomicity!

WAcmt

tscmt=8tsprep

WAprep

WCcmt

tscmt=8tsprep

WCprep

W0 WC

Txn T = {WA, WC}, T’ = R (A, C)

• Solution 1: uncertainty-wait

17

A

B

C

T’

0

0

0

Client
ts=10

Wait

W0

W0

W0

“commit”

tsprep

WAprep WAcmt

tscmt>10

Uncertainty-wait ensures that tscmt must > T’ ts because

• T prepares after T’ “commits,” and

• T’ waits out uncertainty before “commit”, e.g., TT.after(10) == true

A Puzzle to Help With Understanding

WCcmt

tscmt>10tsprep

WCprep

W0W0

• Solution 2: RO advances next RW prepare ts

18

Ensures that tscmt must > T’ ts because

• T prepares after T’ reads at A and

• Shard A will choose tsprep > tsnext for T

A Puzzle to Help With Understanding

A

B

C

T’

0

0

0

Client
ts=10

W0

W0

W0

WAcmt

tscmt>10tsprep

WAprep

WCcmt

tscmt>10tsprep

WCprep

W0 WC

tsnext = 10

Less blocking for RO txns!
This is what Spanner does!

• Client specifies a read timestamp way in the past
• e.g., one hour ago

• Read shards at the stale timestamp

• Serializable
• Old timestamp cannot ensure real-time order

• Better performance
• Always non-blocking, not just lock-free

• Can we have this performance but still strictly serializable?
• e.g., one-round, non-blocking, and strictly serializable
• Coming in next lecture!

19

Serializable Snapshot Reads

Takeaways

• Strictly serializable (externally consistent)
• Make it easy for developers to build apps!

• Reads dominant, make them efficient
• One-round, lock-free
• Must block in some cases

• TrueTime exposes clock uncertainty
• Commit wait and at least TT.now.latest() for timestamps

ensure real-time ordering

• Globally-distributed database
• 2PL w/ 2PC over Paxos!

