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Recap: Spanner Is Strictly Serializable

« Efficient read-only transactions in strictly serializable
systems
« Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)
 Efficient RO txns - good system overall performance



Recap: Ideas Behind Read-Only Txns

« Tag writes with physical timestamps upon commit
« Write txns are strictly serializable, e.g., 2PL

« Read-only txns return the writes whose commit
timestamps precede its timestamp

RO txns are one-round, lock-free, and never abort



Recap: TrueTime

* Timestamping writes must enforce the invariant

 If T2 starts after T1 commits (finishes), then T2 must have a
larger timestamp

* TrueTime: partially-synchronized clock abstraction
« Bounded clock skew (uncertainty)
* TT.now() = [earliest, latest]; earliest <= T_, . <= latest
« Uncertainty (€) is kept short

* TrueTime enforces the invariant by
« Use at least TT.now().latest for timestamps
« Commit wait



Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp

Let T1 write Sg and T2 write S, TT.after(15)
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Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write Sg and T2 write S,

T2.now() T2.commit
=[18, 22] (ts :.22)
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After-class Puzzles

* What's the rule of thumb for choosing ts?
At least T, then at least TT.now().latest

« Can we use TT.now().earliest for ts?
« Can we use TT.now().latest — 1 for ts?

« Can we use TT.now().latest + 1 for ts?



This Lecture

* What is the read-write transaction protocol?
« 2PL + 2PC
 How are they timestamped?

* What is the read-only transaction protocol?
 How are read timestamps chosen?
* How are reads executed?



Read-Write Transactions (2PL)

* Three phases
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2PC: atomicity




Read-Write Transactions (2PL)

Execute |
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Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C="?+1)}

Execute:

* Does reads: grab read locks and return the most recent data, e.g., R(A=a)
« Client computes and buffers writes locally, e.g., A=a+1, B=a+1, C=a+l



Read-Write Transactions (2PL)
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Prepare:

« Choose a coordinator, e.g., A, others are participants
« Send buffered writes and the identity of the coordinator; grab write locks

« Each participant prepares T by logging a prepare record via Paxos with its replicas.
Coord skips prepare (Paxos Logging)

« Participants send OK to the coord if lock grabbed and after Paxos logging is done
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Read-Write Transactions (2PL)

Execute | Prepare : Commit
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Commit:

« After hearing from all participants, coord commits T if all OK; otherwise, abort T

» Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks
» Coord sends commit/abort messages to participants

« Participants log commit/abort via Paxos, apply writes if commit, release locks

« Coord sends result to client either after its “log commit” or after ack
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Timestamping Read-Write Transactions

Execute | Prepare : Commit
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+ Participant: choose a timestamp, e.g., tsg and ts., larger than any writes it has applied

+ Coordinator: choose a timestamp, e.g., ts,, larger than
Any writes it has applied
Any timestamps proposed by the participants, e.g., tsg and ts.
* Its current TT.now().latest

« Coord commit-waits: TT.after(ts,) == true. Commit-wait overlaps with Paxos logging
* ts,is T's commit timestamp 13



Read-Only Transactions (TM part)

Client |
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« Client chooses a read timestamp ts = TT.now().latest

* If no prepared write, return the preceding write, e.g., on shard A

« If write prepared with ts’ > ts, don’t wait, proceed with read, e.g., B
* |f write prepared with ts’ < ts, wait until write commits, e.g., C



Read-Only Transactions (Paxos part)
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Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W, is applied before W,

T’ needs to wait until there exists a Paxos write with ts >= 10, e.g., W3, so alll
writes before 10 are finalized

Put it together: a shard can process a read at ts if ts <=t

t Paxos

sate = MIn(tL2X0S £ TM 5 - all writes with timestamps <= t,;, have been applied



A Puzzle to Help With Understanding

« Assume no replication, only transaction managers

™XNT={W,, W}, T=R (A, C)
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T’ sees partial effect of T! Sees W but not W, so violates atomicity!



A Puzzle to Help With Understanding

» Solution 1: uncertainty-wait
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Uncertainty-wait ensures that ts_,, must > T’ ts because
« T prepares after T' “commits,” and
« T waits out uncertainty before “commit”, e.g., TT.after(10) == true



A Puzzle to Help With Understanding

« Solution 2: RO advances next RW prepare ts
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Ensures that ts_,, must > T’ ts because
T prepares after T' reads at A and
Shard A will choose ts.., >ts . for T

prep next
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Less blocking for RO txns!
This is what Spanner does!
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Serializable Snapshot Reads

 Client specifies a read timestamp way in the past
e e.g., one hour ago

« Read shards at the stale timestamp

 Serializable
 Old timestamp cannot ensure real-time order

 Better performance
» Always non-blocking, not just lock-free

« Can we have this performance but still strictly serializable?
* e.g., one-round, non-blocking, and strictly serializable
« Coming in next lecture!



Takeaways

« Strictly serializable (externally consistent)
 Make it easy for developers to build apps!

« Reads dominant, make them efficient
 One-round, lock-free
 Must block in some cases

» TrueTime exposes clock uncertainty

« Commit wait and at least TT.now.latest() for timestamps
ensure real-time ordering

 Globally-distributed database
e 2PL w/ 2PC over Paxos!



