
Atomic Commit and
Concurrency Control

COS 418/518: Distributed Systems
Lecture 16

Wyatt Lloyd

Lets Scale Strong Consistency!

1. Atomic Commit
• Two-phase commit (2PC)

2. Serializability
• Strict serializability

3. Concurrency Control:
• Two-phase locking (2PL)
• Optimistic concurrency control (OCC)

2

Atomic Commit

• Atomic: All or nothing

• Either all participants do something (commit)
or no participant does anything (abort)

•Common use: commit a transaction that
updates data on different shards

3

Transaction Examples
• Bank account transfer

• Turing -= $100
• Lovelace += $100

• Maintaining symmetric relationships
• Lovelace FriendOf Turing
• Turing FriendOf Lovelace

• Order product
• Charge customer card
• Decrement stock
• Ship stock

4

Relationship with Replication

• Replication (e.g., RAFT) is about doing the same thing multiple
places to provide fault tolerance

• Sharding is about doing different things multiple places for
scalability

• Atomic commit is about doing different things in different places
together

5

Relationship with Replication

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

6

Focus on Sharding for Today

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

7

Atomic Commit

• Atomic: All or nothing

• Either all participants do something (commit) or no
participant does anything (abort)

• Atomic commit accomplished with two-phase commit
protocol (2PC)

8

Two-Phase Commit
• Phase 1

• Coordinator sends Prepare requests to
all participants

• Each participant votes yes or no
• Sends yes or no vote back to coordinator
• Typically acquires locks if they vote yes

• Coordinator inspects all votes
• If all yes, then commit
• If any no, then abort

• Phase 2
• Coordinator sends Commit or

Abort to all participants
• If commit, each participant does

something
• Each participant releases locks
• Each participant sends an Ack

back to the coordinator

9

Unilateral Abort
• Any participant can cause an abort

• With 100 participants, if 99 vote yes and 1 votes no => abort!

• Common reasons to abort:
• Cannot acquire required lock
• No memory or disk space available to do write
• Transaction constraint fails

• (e.g., Alan does not have $100)

• Q: Why do we want unilateral abort for atomic commit?

10

Atomic Commit

•All-or-nothing

•Unilateral abort

•Two-phase commit
• Prepare -> Commit/abort

11

Lets Scale Strong Consistency!

1. Atomic Commit
• Two-phase commit (2PC)

2. Serializability
• Strict serializability

3. Concurrency Control:
• Two-phase locking (2PL)
• Optimistic concurrency control (OCC)

12

Two Concurrent Transactions

13

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Isolation Between Transactions
• Isolation: sum appears to happen either completely

before or completely after transfer
• i.e., it appears that all ops of a transaction happened

together

• Schedule for transactions is an ordering of the
operations performed by those transactions

14

Problem from Concurrent Execution

• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution can result in state that differs from any serial
execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit15

debit credit

debit credit

Isolation Between Transactions
• Isolation: sum appears to happen either completely

before or completely after transfer
• i.e., it appears that all ops of a transaction happened

together

• Given a schedule of operations:
• Is that schedule in some way “equivalent” to a serial

execution of transactions?

16

Equivalence of Schedules

• Two operations from different transactions are conflicting if:
1. They read and write to the same data item
2. They write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and operations
2. They order all conflicting operations of non-aborting

transactions in the same way

17

Serializability
• A schedule is serializable if it is equivalent to some serial

schedule
• i.e., non-conflicting ops can be reordered to get a serial

schedule

18

A Serializable Schedule
• A schedule is serializable if it is equivalent to some serial

schedule
• i.e., non-conflicting ops can be reordered to get a serial

schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

19

Conflict-free!

Serial schedule

rA

A Non-Serializable Schedule
• A schedule is serializable if it is equivalent to some serial

schedule
• i.e., non-conflicting ops can be reordered to get a serial

schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

20

Conflicting opsConflicting ops
But in a serial schedule, sum’s reads
either both before wA or both after wB

Linearizability vs. Serializability

• Linearizability: a guarantee about
single operations on single objects
• Once write completes, all reads that

begin later should reflect that write

• Serializability is guarantee about
transactions over one or more objects
• Doesn’t impose real-time constraints

21

• Strict Serializability = Serializability + real-time ordering
– Intuitively Serializability + Linearizability
– We’ll stick with only Strict Serializability for this class

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner

22

Lets Scale Strong Consistency!
1. Atomic Commit
• Two-phase commit (2PC)

2. Serializability
• Strict serializability

3. Concurrency Control:
• Two-phase locking (2PL)
• Optimistic concurrency control (OCC)

23

Concurrency Control
• Concurrent execution can violate serializability

• We need to control that concurrent execution so we do
things a single machine executing transactions one at a time
would
• Concurrency control

Concurrency Control Strawman #1

• Big global lock
• Acquire the lock when transaction starts
• Release the lock when transaction ends

• Provides strict serializability
• Just like executing transaction one by one because we are doing

exactly that

• No concurrency at all
• Terrible for performance: one transaction at a time

25

Locking
• Locks maintained on each shard
• Transaction requests lock for a data item
• Shard grants or denies lock

• Lock types
• Shared: Need to have before read object
• Exclusive: Need to have before write object

26

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

Concurrency Control Strawman #2

• Grab locks independently, for each data item (e.g., bank
accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock27

Permits this non-serializable interleaving

Two-Phase Locking (2PL)

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks
• Growing phase: transaction acquires locks
• Shrinking phase: transaction releases locks

• In practice:
• Growing phase is the entire transaction
• Shrinking phase is during commit

28

2PL Provide Strict Serializability

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock
29

2PL precludes this non-serializable interleaving

2PL and Transaction Concurrency

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: ◿A rA ◢A wA ◿B rB ◢B wB✻©
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks
30

2PL permits this serializable, interleaved schedule

2PL Doesn’t Exploit All Opportunities for Concurrency

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)
31

2PL precludes this serializable, interleaved schedule

Issues with 2PL
• What do we do if a lock is unavailable?
• Give up immediately?
• Wait forever?

• Waiting for a lock can result in deadlock
• Transfer has A locked, waiting on B
• Sum has B locked, waiting on A

• Many different ways to detect and deal with deadlocks

32

More Concurrency Control Algorithms
• Optimistic Concurrency Control (OCC)

• Multi-Version Concurrency Control (MVCC)

