Distributed Systems Intro

ol VET | NOV y
TES | TAM
Al EN [TvM [}

COS 418/518: Distributed Systems
Lecture 1

Wyatt Lloyd

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?

* Failure
 Limited computation/storage/...

* Physical location

Distributed Systems, Where?

 Web Search (e.g., Google, Bing)

« Shopping (e.g., Amazon, Walmart)

* File Sync (e.g., Dropbox, iCloud)

« Social Networks (e.g., Facebook, Twitter)
* Music (e.g., Spotify, Apple Music)

 Ride Sharing (e.g., Uber, Lyft)

* Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, DOTA2)

“The Cloud” is not
amorphous

U

: .:»r

NIRRT
SAA?AAi

= ,”~.A...u.\n.<nw.. \ .,.:-, “.....ﬁ, - e
3 ” ! o : L
L . \\C /A ‘. " IVAR

RS KK

o o o
~

“-.
11

1

| B |

>
-
-
“a P
<=
—_—

:
..__;.. ..__ L1 e

i 100,000s of physical servers
iy 10s MW energy consumption

: -?i‘\ﬁ:_ ; :-7 117'
T

Facebook Prlnevnle

(PM phyS|caI infra, $1 B IT |lnfra

Distributed Systems Goal

« Service with higher-level abstractions/interface

* e.g., file system, database, key-value store, programming
model, ...

* Hide complexity
« Scalable (scale-out)
 Reliable (fault-tolerant)
« Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to

Scalable Systems in this Class

« Scale computation across many machines
 MapReduce, Streaming Video Engine

« Scale storage across many machines
 Dynamo, COPS, Spanner

Fault Tolerant Systems in this Class

* Retry on another machine
 MapReduce, Streaming Video Engine

« Maintain replicas on multiple machines
* Primary-backup replication
* Paxos
 RAFT
* Bayou
 Dynamo, COPS, Spanner

Range of Abstractions and Guarantees

« Eventual Consistency
 Dynamo

« Causal Consistency
« Bayou, COPS

* Linearizability
* Paxos, RAFT, Primary-backup replication

« Strict Serializability
« 2PL, Spanner

Learning Objectives

* Reasoning about concurrency
* Reasoning about failure
« Reasoning about performance

 Building systems that correctly handle concurrency and failure

* Knowing specific system designs and design components

Conclusion

* Distributed Systems
» Multiple machines doing something together
* Pretty much everywhere and everything computing now

« “Systems”
« Hide complexity and do the heavy lifting (i.e., interesting!)
» Scalability, fault tolerance, guarantees

