
Distributed Systems Intro

COS 418/518: Distributed Systems
Lecture 1

Wyatt Lloyd

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

Distributed Systems, Why?
• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage/…

• Physical location

• Web Search (e.g., Google, Bing)
• Shopping (e.g., Amazon, Walmart)
• File Sync (e.g., Dropbox, iCloud)
• Social Networks (e.g., Facebook, Twitter)
• Music (e.g., Spotify, Apple Music)
• Ride Sharing (e.g., Uber, Lyft)
• Video (e.g., Youtube, Netflix)
• Online gaming (e.g., Fortnite, DOTA2)
• …

Distributed Systems, Where?

“The Cloud” is not
amorphous

5

6Microsoft

7

Google

8Facebook

9Facebook

100,000s of physical servers
10s MW energy consumption

Facebook Prineville:
$250M physical infra, $1B IT infra

Distributed Systems Goal

• Service with higher-level abstractions/interface
• e.g., file system, database, key-value store, programming

model, …

• Hide complexity
• Scalable (scale-out)
• Reliable (fault-tolerant)
• Well-defined semantics (consistent)

• Do “heavy lifting” so app developer doesn’t need to

Scalable Systems in this Class
• Scale computation across many machines

• MapReduce, Streaming Video Engine

• Scale storage across many machines
• Dynamo, COPS, Spanner

Fault Tolerant Systems in this Class
• Retry on another machine

• MapReduce, Streaming Video Engine

• Maintain replicas on multiple machines
• Primary-backup replication
• Paxos
• RAFT
• Bayou
• Dynamo, COPS, Spanner

Range of Abstractions and Guarantees
• Eventual Consistency

• Dynamo

• Causal Consistency
• Bayou, COPS

• Linearizability
• Paxos, RAFT, Primary-backup replication

• Strict Serializability
• 2PL, Spanner

Learning Objectives
• Reasoning about concurrency
• Reasoning about failure
• Reasoning about performance

• Building systems that correctly handle concurrency and failure

• Knowing specific system designs and design components

Conclusion
• Distributed Systems

• Multiple machines doing something together
• Pretty much everywhere and everything computing now

• “Systems”
• Hide complexity and do the heavy lifting (i.e., interesting!)
• Scalability, fault tolerance, guarantees

