Parallel Prefix Scan and Assignment 7

COS 326

Andrew Appel

Princeton University

Credits:

Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)
The prefix-sum problem

prefix_sum : int seq -> int seq

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>

The simple sequential algorithm: accumulate the sum from left to right

- Sequential algorithm: Work: $O(n)$, Span: $O(n)$
- Goal: a parallel algorithm with Work: $O(n)$, Span: $O(\log n)$
Parallel prefix-sum

The trick: *Use two passes*
- Each pass has $O(n)$ work and $O(\log n)$ span
- So in total there is $O(n)$ work and $O(\log n)$ span

First pass *builds a tree of sums bottom-up*
- the “up” pass

Second pass *traverses the tree top-down to compute prefixes*
- the “down” pass computes the "from-left-of-me" sum

Historical note:
- Original algorithm due to R. Ladner and M. Fischer, 1977
Example

Input

6 4 16 10 16 14 2 8

Output

6 10 26 36 52 68 68 76

Sum from left

range 0,8

range 6,8

range 4,8

range 2,4

range 0,4

range 0,2

range 0,1

range 1,2

range 2,3

range 3,4

range 4,5

range 5,6

range 6,7

range 7,8

Example
The algorithm, pass 1

1. Up: Build a binary tree where
 - Root has sum of the range \([x, y)\)
 - If a node has sum of \([lo, hi)\) and \(hi > lo\),
 • Left child has sum of \([lo, \text{middle})\)
 • Right child has sum of \([\text{middle}, hi)\)
 • A leaf has sum of \([i, i+1)\), i.e., \(n\text{th input } i\)

This is an easy parallel divide-and-conquer algorithm: “combine” results by actually building a binary tree with all the range-sums
 - Tree built bottom-up in parallel

Analysis: \(O(n)\) work, \(O(\log n)\) span
2. Down: Pass down a value \texttt{fromLeft}
 - Root given a \texttt{fromLeft} of 0
 - Node takes its \texttt{fromLeft} value and
 - Passes its left child the same \texttt{fromLeft}
 - Passes its right child its \texttt{fromLeft} plus its left child’s \texttt{sum}
 - as stored in part 1
 - At the leaf for sequence position \texttt{i},
 - \texttt{nth output i} == \texttt{fromLeft} + \texttt{nth input i}

This is an easy parallel divide-and-conquer algorithm:
 traverse the tree built in step 1 and produce no result
 - Leaves create \texttt{output}
 - Invariant: \texttt{fromLeft} is sum of elements left of the node’s range

Analysis: $O(n)$ work, $O(\log n)$ span
Sequential cut-off

For performance, we need a sequential cut-off:

• Up:
 – just a sum, have leaf node hold the sum of a range

• Down:
 – do a sequential scan
Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements *to the left of i*

- Is there an element *to the left of i* satisfying some property?

- Count of elements *to the left of i* satisfying some property
 - This last one is perfect for an efficient parallel filter ...
 - Perfect for building on top of the “parallel prefix trick”
Parallel Scan

\[
\text{scan (o) } \langle x_1, \ldots, x_n \rangle \\
== \\
\langle x_1, x_1 \circ x_2, \ldots, x_1 \circ \ldots \circ x_{n-1} \rangle
\]

like a fold, except return the folded prefix at each step

\[
\text{pre_scan (o) base } \langle x_1, \ldots, x_n \rangle \\
== \\
\langle \text{base, base } \circ x_1, \ldots, \text{base } \circ x_1 \circ \ldots \circ x_{n-1} \rangle
\]

sequence with \(\circ \) applied to all items to the left of index in input

Operator \(\circ \) must be associative!

base must be a unit for operator \(\circ \)
Parallel Filter

Given a sequence **input**, produce a sequence **output** containing only elements \(v \) such that \((f \ v)\) is **true**

Example: let \(f \ x = x > 10 \)

\[
\text{filter } f \ <17, 4, 6, 8, 11, 5, 13, 19, 0, 24> \\
\text{== } <17, 11, 13, 19, 24>
\]

Parallelizable?

- Finding elements for the output is easy
- *But getting them in the right place seems hard*
Use parallel map to compute a bit-vector for true elements:

\[
\begin{align*}
\text{input} & \quad <17, 4, 6, 8, 11, 5, 13, 19, 0, 24> \\
\text{bits} & \quad <1, 0, 0, 0, 1, 0, 1, 1, 0, 1>
\end{align*}
\]

Use parallel-prefix sum on the bit-vector:

\[
\text{bitsum} \quad <1, 1, 1, 1, 2, 2, 3, 4, 4, 5>
\]

For each i, if \text{bits}[i] == 1 then write \text{input}[i] to \text{output}[\text{bitsum}[i]] to produce the final result:

\[
\text{output} \quad <17, 11, 13, 19, 24>
\]
QUICKSORT
Recall quicksort was sequential, in-place, expected time $O(n \log n)$.

Best / expected case work

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 - A. The elements less than the pivot $O(n)$
 - B. The pivot
 - C. The elements greater than the pivot
3. Recursively sort A and C $2T(n/2)$

How should we parallelize this?
Quicksort

Best / expected case work

1. Pick a pivot element \(O(1) \)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n) \)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2) \)

Easy: Do the two recursive calls in parallel

- Work: unchanged. Total: \(O(n \log n) \)
- Span: now \(T(n) = O(n) + 1T(n/2) = O(n) \)
As with mergesort, we get a $O(\log n)$ speed-up with an infinite number of processors. That is a bit underwhelming

- Sort 10^9 elements 30 times faster

(Some) Google searches suggest quicksort cannot do better because the partition cannot be parallelized*

- The Internet has been known to be wrong 😊
- But we need auxiliary storage (no longer in place)
- In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition...

*These days, most hits get this right, and discuss parallel partition
Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

This is just two filters!
- We know a parallel filter is $O(n)$ work, $O(\log n)$ span
- Parallel filter elements less than pivot into left side of aux array
- Parallel filter elements greater than pivot into right size of aux array
- Put pivot between them and recursively sort

With $O(\log n)$ span for partition, the total best-case and expected-case span for quicksort is

$$T(n) = O(\log n) + 1T(n/2) = O(\log^2 n)$$
Example

Step 1: pick pivot as median of three

| 8 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 6 |

Steps 2a and 2c (combinable): filter less than, then filter greater than into a second array

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>0</th>
<th>3</th>
<th>5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 3: Two recursive sorts in parallel

- Can copy back into original array (like in mergesort)
More Algorithms

• To add multiprecision numbers.
• To evaluate polynomials
• To solve recurrences.
• To implement radix sort
• To delete marked elements from an array
• To dynamically allocate processors
• To perform lexical analysis. For example, to parse a program into tokens.
• To search for regular expressions. For example, to implement the UNIX grep program.
• To implement some tree operations. For example, to find the depth of every vertex in a tree
• To label components in two dimensional images.

See Guy Blelloch “Prefix Sums and Their Applications”
Summary

• Parallel prefix sums and scans have many applications
 – A good algorithm to have in your toolkit!

• Key idea: An algorithm in 2 passes:
 – Pass 1: build a "reduce tree" from the bottom up
 – Pass 2: compute the prefix top-down, looking at the left-subchild to help you compute the prefix for the right subchild
ASSIGNMENT #7:
PROGRAMMING WITH PARALLEL SEQUENCES
Do the reading . . .

Chapter 2, “Search Engine Indexing”

(On reserve for this course, available at canvas.princeton.edu, select this course, then “reserves”)

(Read also Chapter 3, “Page Rank” so you can appreciate what you were doing in Assignment 5 . . .)
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tabulate (f: int->α) (n: int) : α seq</code></td>
<td>Create seq of length n, element i holds f(i)</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td><code>seq_of_array: α array -> α seq</code></td>
<td>Create a sequence from an array</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>array_of_seq: α seq -> α array</code></td>
<td>Create an array from a sequence</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>iter (f: α -> unit): α seq -> unit</code></td>
<td>Applying f on each element in order.</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td><code>length: α seq -> int</code></td>
<td>Return the length of the sequence</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>empty: unit -> α seq</code></td>
<td>Return the empty sequence</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>cons: α -> α seq -> α seq</code></td>
<td>cons a new element on the beginning</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td><code>singleton: α -> α seq</code></td>
<td>Return the sequence with a single element</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>append: α seq -> α seq -> α seq</code></td>
<td>(nondestructively) concatenate two sequences</td>
<td>m+n</td>
<td>1</td>
</tr>
<tr>
<td><code>nth: α seq -> int -> α</code></td>
<td>Get the nth value in the sequence. Indexing is zero-based.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>map (f: α -> β) -> α seq -> β seq</code></td>
<td>Map the function f over a sequence</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td><code>reduce (f: α -> α -> α) (base: α): α seq -> α</code></td>
<td>Fold a function f over the sequence. f must be associative, and base must be the unit for f.</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td><code>mapreduce: (α->β)->(β->β->β)->β -> α seq -> β</code></td>
<td>Combine the map and reduce functions.</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td><code>flatten: α seq seq -> α seq</code></td>
<td>flatten [[a0;a1]; [a2;a3]] = [a0;a1;a2;a3]</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td><code>repeat (x: α) (n: int) : α seq</code></td>
<td>repeat x 4 = [x;x;x;x]</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td><code>zip: (α seq * β seq) -> (α * β) seq</code></td>
<td>zip [a0;a1] [b0;b1;b2] = [(a0,b0);(a1,b1)]</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td><code>split: α seq -> int -> α seq * α seq</code></td>
<td>split [a0;a1;a2;a3] 1= ([a0],[a1;a2;a3])</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td><code>scan: (α->α->α) -> α -> α seq -> α seq</code></td>
<td>scan f b [a0;a1;a2;...] = [f b a0; f (f b a0) a1; f (f (f b a0) a1) a2; ...]</td>
<td>n</td>
<td>log n</td>
</tr>
</tbody>
</table>
These parallel-sequence operators are inspired by the NESL language (and system) developed by Guy Blelloch.

http://www.cs.cmu.edu/~scandal/nesl.html

NESL is a parallel language developed at Carnegie Mellon. It integrates ideas from the theory community (parallel algorithms), the languages community (functional languages) and the systems community (many of the implementation techniques). The most important new ideas behind NESL are

1. **Nested data parallelism**: this feature offers the benefits of data parallelism, concise code that is easy to understand and debug, while being well suited for irregular algorithms, such as algorithms on trees, graphs or sparse.

2. **A language-based performance model**: this gives a formal way to calculate the **work** and **depth** of a program. These measures can be related to running time on parallel machines.
IMPLEMENTATION OF PARALLEL SEQUENCES
Data Centers: *Lots* of Connected Computers!

2 cpu chips
48 cores
Real Machines

Board

Core 1
ALU
L1 cache
L2 cache
Core 2
ALU
L1 cache
Core 3
ALU
L1 cache
Core 4
ALU
L1 cache

Core 1
ALU
L1 cache
Core 2
ALU
L1 cache
Core 3
ALU
L1 cache
Core 4
ALU
L1 cache

RAM
“Disk”
Real Machines

Shelf

Rack

Server room
s: int seq
length(s) = 10^9
Real Machines

10^4

10^9
Real Machines

10^5 elements per processor

10^4

10^9
Real Machines

10^5 elements per processor

<table>
<thead>
<tr>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

tabulate (f: int->α) (n: int) : α seq
Create seq of length n, element i holds f(i)
module type S = sig
 type 'a t
 val tabulate : (int -> 'a) -> int -> 'a t
 val seq_of_array : 'a array -> 'a t
 val array_of_seq : 'a t -> 'a array
 val iter: ('a -> unit) -> 'a t -> unit
 val length : 'a t -> int
 val empty : unit ->'a t
 val cons : 'a -> 'a t -> 'a t
 val singleton : 'a -> 'a t
 val append : 'a t -> 'a t -> 'a t
 val nth : 'a t -> int -> 'a
 val map : ('a -> 'b) -> 'a t -> 'b t
 val map_reduce : ('a -> 'b) -> ('b -> 'b -> 'b) -> 'b -> 'a t -> 'b
 val reduce : ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a
 val flatten : 'a t t -> 'a t
 val repeat : 'a -> int -> 'a t
 val zip : ('a t * 'b t) -> ('a * 'b) t
 val split : 'a t -> int -> 'a t
 val scan: ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a t
end

module ArraySeq : S = struct
 type 'a t = 'a array
 let length = Array.length
 let empty () = Array.init 0 (fun _ -> raise (Invalid_argument ""))
 let singleton x = Array.make1 x
 let append = Array.append
 let cons (x:'a) (s:'a t) = append (singleton x) s
 let tabulate f n = Array.init n f
 let nth = Array.get
 let map = Array.map
 . . .
end
module type S = sig
 type 'a t
 val tabulate : (int -> 'a) -> int -> 'a t
 val seq_of_array : 'a array -> 'a t
 val array_of_seq : 'a t -> 'a array
 val iter: ('a -> unit) -> 'a t -> unit
 val length : 'a t -> int
 val empty : unit ->'a t
 val cons : 'a -> 'a t -> 'a t
 val singleton : 'a -> 'a t
 val append : 'a t -> 'a t -> 'a t
 val nth : 'a t -> int -> 'a
 val map : ('a -> 'b) -> 'a t -> 'b t
 val map_reduce : ('a -> 'b) -> ('b -> 'b -> 'b) -> 'b -> 'a t -> 'b
 val reduce : ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a
 val flatten : 'a t t -> 'a t
 val repeat : 'a -> int -> 'a t
 val zip : ('a t * 'b t) -> ('a * 'b) t
 val split : 'a t -> int -> 'a t * 'a t
 val scan: ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a t
end

module Accounting (M: S) : SCount =
 struct
 let work = ref 0
 let span = ref 0
 let reporting name f x = ...
 module SM = struct
 type 'a t = 'a M.t
 let tabulate f n = (cost n 1;
 let s = !span in
 let smax = ref s in
 let z = M.tabulate (fun x -> let y = f x in
 smax := max (!smax) (!span);
 span := s; y) n
 in span := !smax; z)
 let length a = (cost 1 1; M.length a)
 let append a b = (cost (M.length a + M.length b) 1;
 M.append a b)
 . . .
 end
 end
How to use it

Open Sequence
module A = Accounting(ArraySeq)
module M = A.SM

let s1 = M.seq_of_array [|1;2;3;4;5|]
let f (s: int M.seq) = M.map (fun i -> i+1) s
let s2 = A.reporting "test1" f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: *)
test1 work=5 span=1
r : int list = [2;3;4;5;6]
How to use these operators to make an inverted index?

key: URL value: contents of web page (HTML)
sequence of words

key: word value: sequence of (URL,position-in-seq) pairs
How to use these operators to make an inverted index?

key: URL value: word seq

key: word value: (URL*int) seq
How to use these operators to make an inverted index?

key: URL value: word seq

(URL * (word seq)) seq

key: word value: (URL*int) seq
Discussion

How to use these operators to make an inverted index?

Input web pages: \((URL^* (word \text{ seq})) \ \text{seq}\)

\[
\begin{align*}
\text{key: word} & \quad \text{value: (URL *int) seq} \\
\text{finite map: word} & \rightarrow((URL*\text{int})\text{seq})
\end{align*}
\]

Implement by balanced binary search tree (such as 2-3 tree) from OCaml’s Map library.
Discussion

How to use these operators to make an inverted index?

Input web pages: \((\text{URL}^* (\text{word seq}))^{\text{seq}}\)

Now, let’s focus on a single web page, one element of this sequence of web pages

word \(\left((\text{URL}^*\text{int})^{\text{seq}}\right)\) Map.t
(URL* (word seq))

word ((URL*int)seq) Map.t

0 1 2 3 4
(foo.com, [the;play;is;the;thing])

is \rightarrow [(foo.com,2)]
play \rightarrow [(foo.com,1)]
the \rightarrow [(foo.com,0); (foo.com,3)]
thing \rightarrow [(foo.com,4)]
Discussion

(bar.com, [play;the;thing])

\[
\begin{align*}
\text{play} & \mapsto [(\text{bar.com},0)] \\
\text{the} & \mapsto [(\text{bar.com},1)] \\
\text{thing} & \mapsto [(\text{bar.com},2)]
\end{align*}
\]

(foo.com, [the;play;is;the;thing])

\[
\begin{align*}
\text{is} & \mapsto [(\text{foo.com},2)] \\
\text{play} & \mapsto [(\text{foo.com},1)] \\
\text{the} & \mapsto [(\text{foo.com},0); (\text{foo.com},3)] \\
\text{thing} & \mapsto [(\text{foo.com},4)]
\end{align*}
\]
(bar.com, [play;the;thing]) (foo.com, [the;play;is;the;thing])

play → [(bar.com,0)] is → [(foo.com,2)]
the → [(bar.com,1)] play → [(foo.com,1)]
thing → [(bar.com,2)] the → [(foo.com,0); (foo.com,3)]
 thing → [(foo.com,4)]
Discussion

How to use these operators to make an inverted index?

Input web pages: \((URL^* (word \ seq))seq\)

word \(((URL^*int)seq)\) Map.t

Reduce!
How to use these operators to make an inverted index?

Input web pages: \((URL^* (word\ seq))^{seq}\)

word \(((URL^*int)\seq)\ Map.t\)

This has been a brief introduction to give you a flavor of what you have to do. More details in the homework . . . but not necessarily a lot more – you’ll have to think for yourself.

And: There is not “one true solution” to this homework.
Open Sequence
module A = Accounting(ArraySeq)
module M = A.SM

let rec costly (n: int) = if n=0 then 1 else costly (n-1) + costly (n-1)

let s1 = M.seq_of_array [|51;52;53;54;55|]
let f (s: int M.seq) = M.map costly s
let s2 = A.reporting “test2” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: *)
test2 work=5 span=1

r : int list = [2;3;4;5;6]

Ideally, each function you write in OCaml should do a small amount of computation (other than nested calls to the M operators).
CONCLUSION
By using the Parallel Sequence operators to combine pure-functional implementations of primitive functions, you can:

• Write highly parallel programs
• that scale to many processors
• with fault-tolerance built in
• that compute the same answer deterministically no matter how the parallel execution goes
• while still thinking at a high level of abstraction, independent of the gory details of your parallel machine.