
Parallel Sequences

Credits:
Dan Grossman, U.Wash.

Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2018-20 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Parallel Programming

Programming with
shared mutable data
is very hard!

How can we leverage
• pure functions
• immutable data
• function

composition
to write large-scale
parallel programs?

Fujitsu A64FX (48 ARM cores)

What if you had a really big job to do?
Example: Create an index of every web page on the planet.

– Google does that regularly!
– There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:
– how do we distribute work across all those computers?
– you definitely can't use shared-memory parallelism because the

computers don't share memory!
– when you use 1 computer, you just hope it doesn't fail. If it

does, you go to the store, buy a new one and restart the job.
– when you use 1000s of computers at a time, failures become the

norm. what to do when 1 of 1000 computers fail? Start over?

Big Jobs ---> Better Abstractions

Need high-level interfaces to shield application programmers
from the complex details. Complex implementations solve the
problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter

COMPLEXITY OF
PARALLEL ALGORITHMS

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

dependence:
x = 1 + 2 happens before 3 + x

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

Execution of dependency diagrams: A processor can only begin executing the
computation associated with a block when the computations of all of its
predecessor blocks have been completed.

Visualizing Computational Costs

step 1:
execute first block x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 0

Visualizing Computational Costs

step 1:
execute first block x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1

Visualizing Computational Costs

step 2:
execute second block
because all of its
predecessors have
been completed

x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1

Visualizing Computational Costs

step 2:
execute second block
because all of its
predecessors have
been completed

x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1 + 1

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

total cost
= 1 + 1
= 2

Visualizing Computational Costs

(1 + 2 || f 3)

parallel pair:
compute both left and right-hand sides independently
return pair of values
(easy to implement using futures)

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?
Schedule A-B-C-D: 1 + 1 + 7 + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?
Schedule A-C-B-D: 1 + 1 + 7 + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1 + max(1,7)

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1 + max(1,7) + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Total cost: 1 + max(1,7) + 1. We say the schedule we used was: A-CB-D

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 3 processors. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 3 processors. How much time does this computation take?
Schedule A-BC-D: 1 + max(1,7) + 1 = 9

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have infinite processors. How much time does this computation take?
Schedule A-BC-D: 1 + max(1,7) + 1 = 9

A

B C

D

Work and Span
Understanding the complexity of a parallel program is a little
more complex than a sequential program

– the number of processors has a significant effect

One way to approximate the cost is to consider a parallel
algorithm independently of the machine it runs on is to consider
two metrics:

– Work: The cost of executing a program with just 1 processor.
– Span: The cost of executing a program with an infinite number

of processors

Always good to minimize work
– Every instruction executed consumes energy
– Minimize span as a second consideration
– Communication costs are also crucial (we are ignoring them)

Parallelism
The parallelism of an algorithm is an estimate of the maximum
number of processors an algorithm can profit from.
• parallelism = work / span

If work = span then parallelism = 1.
• We can only use 1 processor
• It's a sequential algorithm

If span = ½ work then parallelism = 2
• We can use up to 2 processors

If work = 100, span = 1
• All operations are independent & can be executed in parallel
• We can use up to 100 processors

Series-Parallel Graphs

Series-parallel graphs arise from execution of functional programs with
parallel pairs. Also known as well-structured, nested parallelism.

one operation two operations
in sequence

e1; e2

two operations
in parallel
(e1 || e2)

Parallel Pairs

f x g y

let both f x g y =
let ff = future f x in
let gv = g y in
(force ff, gv)

Series-Parallel Graphs Compose

In general, a series-parallel graph has a source and a sink and is:
• a single node, or
• two series-parallel graphs in sequence, or
• two series-parallel graphs in parallel

one operation two graphs
in sequence

two graphs
in parallel

Not a Series-Parallel Graph

However:
The results about
greedy schedulers
(next few slides)
do apply to DAG
schedules as well
as series-parallel

schedules!

Work and Span of Acyclic Graphs
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from
source to sink.

Work and Span of Acyclic Graphs
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from
source to sink.

work = 10
span = 5

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J F
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J F
F

Conclusion:
How you schedule
jobs can have an
impact on performance

Greedy Schedulers
Greedy schedulers will schedule some task to a processor as
soon as that processor is free.

– Doesn't sound so smart!

Greedy Schedulers
Greedy schedulers will schedule some task to a processor as
soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):
– T(p) < work/p + span

• won't be worse than dividing up the data perfectly between
processors, except for the last little bit, which causes you to add
the span on top of the perfect division

– T(p) >= max(work/p, span)
• can't do better than perfect division between processors (work/p)
• can't be faster than span

Greedy Schedulers
Properties (for p processors):

max(work/p, span) <= T(p) < work/p + span

Consequences:
– as span gets small relative to work/p

• work/p + span ==> work/p
• max(work/p, span) ==> work/p
• so T(p) ==> work/p -- greedy schedulers converge to the optimum!

– if span approaches the work
• work/p + span ==> span
• max(work/p, span) ==> span
• so T(p) ==> span – greedy schedulers converge to the optimum!

And therefore
Even though greedy schedulers are simple to implement,

they can be effective in building a parallel programming system.

and

This supports the idea that work and span are useful ways to
reason about the cost of parallel programs.

PARALLEL SEQUENCES

Parallel Sequences
Parallel sequences

Operations:
– creation (called tabulate)
– indexing an element in constant span
– map
– scan -- like a fold: <u, u + e1, u + e1 + e2, ...> log n span!

Languages:
– Nesl [Blelloch]
– Data-parallel Haskell

< e1 , e2 , e3 , ... , en >

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

length : 'a seq -> int

length <e0, e1, ..., e(n-1)> == n
work = O(1) span = O(1)

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* create n == <0, 1, ..., n-1> *)
let create n =

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* create n == <0, 1, ..., n-1> *)
let create n =
tabulate (fun i -> i) n

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =
tabulate (fun i -> f (nth s i)) (length s)

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
let n = length s in
tabulate (fun i -> nth s (n-i-1)) n

A Parallel Sequence API

type 'a seq

tabulate : (int -> 'a) -> int -> 'a seq

length : 'a seq -> int

nth : 'a seq -> int -> 'a

append : 'a seq -> 'a seq -> 'a seq

split : 'a seq -> int -> 'a seq * 'a seq

O(N)

Work Span

O(1)

O(1)

O(N+M)

O(N)

O(1)

O(1)

O(1)

O(1)

O(1)

For efficient implementations, see Blelloch's NESL project:
http://www.cs.cmu.edu/~scandal/nesl.html

(can build this from tabulate, nth, length)

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0sum:

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0 7sum:

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0 7 231411sum: 31

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

let sum_all (l:int list) = reduce (+) 0 l

7 4 3 9 8

0 7 231411sum: 31

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

Key to parallelization: Notice that because sum is an associative
operator, we do not have to add the elements strictly left-to-right:

let sum_all (l:int list) = reduce (+) 0 l

7 4 3 9 8

0 7 231411sum: 31

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)

add on processor 1 add on processor 2

Side Note

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)

add on processor 1 add on processor 2

The key is associativity:

Commutativity allows us to reorder the elements:
v1 + v2 == v2 + v1

But we don't have to reorder elements to obtain a significant speedup;
we just have to reorder the execution of the operations.

Commutativity not needed!

Parallel Sum

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

2 7 4 3 9 8 2 1

Parallel Sum

2 7 4 3 9 8 2 1

+ + ++

31779

++

16 20

+

36

Parallel Sum

let rec psum (s : int seq) : int =
match length s with
0 -> 0

| 1 -> nth s 0
| n ->

let (s1,s2) = split (n/2) s in
let (a1, a2) = both psum s1

psum s2 in
a1 + a2

let both f x g y =
let ff = future f x in
let gv = g y in
(force ff, gv)

Parallel Reduce

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

2 7 4 3 9 8 2 1

op

op

op op op op

op

If op is associative and the base case has the properties:
op base X == X op X base == X

then the parallel reduce is equivalent to the sequential left-to-right fold.

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
match length s with
0 -> base

| 1 -> nth s 0
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both (reduce f base) s1

(reduce f base) s2 in
f n1 n2

Parallel Reduce

let sum s = reduce (+) 0 s

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
match length s with
0 -> base

| 1 -> nth s 0
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both (reduce f base) s1

(reduce f base) s2 in
f n1 n2

A little more general

let rec mapreduce (inject: 'a -> 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) =

match length s with
0 -> base

| 1 -> inject (nth s 0)
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both

(mapreduce inject combine base) s1
(mapreduce inject combine base) s2 in

combine n1 n2

A little more general
let rec mapreduce (inject: 'a -> 'b)

(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) =

match length s with
0 -> base

| 1 -> inject (nth s 0)
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both

(mapreduce inject combine base) s1
(mapreduce inject combine base) s2 in

combine n1 n2

let average s =
let (count, total) =
mapreduce (fun x -> (1,x))

(fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
(0,0) s in

if count = 0 then 0 else total / count

DON’T PARALLELIZE
AT TOO FINE A GRAIN

Parallel Reduce with Sequential Cut-off
When data is small, the overhead of parallelization isn't worth it.
Revert to the sequential version!

let SHORT = 1000

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
if length s < SHORT
then sequential_reduce f base s
else let (s1,s2) = split ((length s)/2) s in

let (n1, n2) = both (reduce f base) s1
(reduce f base) s2 in

f n1 n2

let sequential_reduce f base (s:'a seq) =
let rec g i x =

if i<0 then x else g (i-1) (f (nth a i) x)
in g (length s – 1)

BALANCED PARENTHESES

The Balanced Parentheses Problem
Consider the problem of determining whether a sequence of
parentheses is balanced or not. For example:

– balanced: ()()(())
– not balanced: (
– not balanced:)(
– not balanced: ()))

We will try formulating a divide-and-conquer parallel algorithm
to solve this problem efficiently:

type paren = L | R (* L(eft) or R(ight) paren *)

let balanced (ps : paren seq) : bool = ...

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2 1

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2 1 0

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2 1 0 -1!!

too many right parens
indicates no match

First, a sequential approach

(()

if you reach the end of
the end of the sequence,
you should have no
unmatched left parens

0 1 2 1

Easily Coded Using a Fold

let rec fold f b s =
let rec aux n accum =
if n >= length s then
accum

else
aux (n+1) (f (nth s n) accum)

in
aux 0 b

v1 v2

b f b v1 f (f b v1) v2fold:

Easily Coded Using a Fold

(* check to see if we have too many unmatched R parens

so_far : number of unmatched parens so far
or None if we have seen too many R parens

*)

let check (p:paren) (so_far:int option) : int option =
match (p, so_far) with
(_, None) -> None

| (L, Some c) -> Some (c+1)
| (R, Some 0) -> None (* violation detected *)
| (R, Some c) -> Some (c-1)

Easily Coded Using a Fold

let fold f base s = ...

let check so_far s = ...

let balanced (s: paren seq) : bool =
match fold check (Some 0) s with

Some 0 -> true
| (None | Some n) -> false

That was easy enough. But the “check” function is not associative,
that means it can’t be used in a parallel “reduce”.

That’s what I was
warning about!

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if x ≥ k then))) ... j ...)))))) ... x – k ...))) (((... y ... (((

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if x ≥ k then))) ... j ...)))))) ... x – k ...))) (((... y ... (((

– if x ≤ k then))) ... j ...))) (((... k – x ... ((((((... y ... (((

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:

))) ... j ...))) (((... k ... (((
*)

let rec matcher s =
match length s with
0 -> (0, 0)

| 1 -> (match nth s 0 with
| L -> (0, 1)
| R -> (1, 0))

| n ->
let (left, right) = split (n/2) s in
let ((j, k), (x, y)) = both matcher left

matcher right in
if x > k
then (j + (x – k), y)
else (j, (k – x) + y)

))) ... j ...))) (((... k ... (((
))) ... x ...))) (((... y ... (((

Parallel Balance

(* *)
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =

match matcher s with
| (0, 0) -> true
| (j,k) -> false

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:

))) ... j ...))) (((... k ... (((
*)

let rec matcher s =
match length s with
0 -> (0, 0)

| 1 -> (match nth s 0 with
| L -> (0, 1)
| R -> (1, 0))

| n ->
let (left, right) = split (n/2) s in
let ((j, k), (x, y)) = both matcher left

matcher right in
if x > k
then (j + (x – k), y)
else (j, (k – x) + y)

This looks just like mapreduce!

Using a Parallel Fold

let inject paren =
match paren with
L -> (0, 1)

| R -> (1, 0)

let combine (j,k) (x,y) =
if x > k then (j + (x – k), y)
else (j, (k – x) + y)

let balanced s =
match mapreduce inject combine (0,0) s with
| (0, 0) -> true
| (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) = ...

Using a Parallel Fold

let inject paren =
match paren with
L -> (0, 1)

| R -> (1, 0)

let combine (j,k) (x,y) =
if x > k then (j + (x – k), y)
else (j, (k – x) + y)

let balanced s =
match mapreduce inject combine (0,0) s with
| (0, 0) -> true
| (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) = ...

Work: O(N)
Span: O(log N)

Using a Parallel Fold

let inject paren =
match paren with
L -> (0, 1)

| R -> (1, 0)

let combine (j,k) (x,y) =
if x > k then (j + (x – k), y)
else (j, (k – x) + y)

let balanced s =
match mapreduce inject combine (0,0) s with
| (0, 0) -> true
| (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) = ...

For correctness,
check the associativity

of combine

also check:
combine base (i,j) == (i, j)

Summary

Parallel complexity can be described in terms of work and span

Folds and reduces are easily coded as parallel divide-and-
conquer algorithms with O(n) work and O(log n) span

The map-reduce paradigm, inspired by functional programming,
is a winner when it comes to big-data processing (more about that
in the next lecture).

Sanity checks

Prove for yourself:

combine (combine (j,k) (x,y)) (a,b) = combine (j,k) (combine (x,y)(a,b))

combine (j,k) (0,0) = (j,k) combine (0,0) (j,k) = (j,k)

let combine (j,k) (x,y) =
if x > k then (j + (x – k), y)
else (j, (k – x) + y)

base = (0,0)

check the associativity
of combine

also check:
combine base (i,j) == (i, j)

	Parallel Sequences
	Parallel Programming
	What if you had a really big job to do?
	Big Jobs ---> Better Abstractions
	Complexity of�parallel algorithms
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Visualizing Computational Costs
	Work and Span
	Parallelism
	Series-Parallel Graphs
	Parallel Pairs
	Series-Parallel Graphs Compose
	Not a Series-Parallel Graph
	Work and Span of Acyclic Graphs
	Work and Span of Acyclic Graphs
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Greedy Schedulers
	Greedy Schedulers
	Greedy Schedulers
	And therefore
	Parallel sequences
	Parallel Sequences
	Parallel Sequences: Selected Operations
	Parallel Sequences: Selected Operations
	Parallel Sequences: Selected Operations
	Example Problems
	Example Problems
	Example Problems
	Example Problems
	Example Problems
	Example Problems
	Example Problems
	Example Problems
	Example Problems
	 A Parallel Sequence API
	Fold and Reduce
	Fold and Reduce
	Fold and Reduce
	Fold and Reduce
	Fold and Reduce
	Side Note
	Parallel Sum
	Parallel Sum
	Parallel Sum
	Parallel Reduce
	Parallel Reduce
	Parallel Reduce
	A little more general
	A little more general
	Don’t parallelize�at too fine a grain
	Parallel Reduce with Sequential Cut-off
	Balanced parentheses
	The Balanced Parentheses Problem
	First, a sequential approach
	First, a sequential approach
	First, a sequential approach
	First, a sequential approach
	First, a sequential approach
	First, a sequential approach
	First, a sequential approach
	Easily Coded Using a Fold
	Easily Coded Using a Fold
	Easily Coded Using a Fold
	Parallel Version
	Parallel Version
	Parallel Version
	Parallel Version
	Parallel Version
	Parallel Version
	Parallel Matcher
	Parallel Balance
	Parallel Matcher
	Using a Parallel Fold
	Using a Parallel Fold
	Using a Parallel Fold
	Summary
	Sanity checks

