Parallel Sequences

COS 326

Speaker: Andrew Appel

Princeton University

Credits:

Dan Grossman, U.Wash.
Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)

Parallel Programming

Programming with shared mutable data is very hard!

How can we leverage

- pure functions
- immutable data
- function composition

to write large-scale parallel programs?

Fujitsu A64FX (48 ARM cores)

What if you had a really big job to do?

Example: Create an index of every web page on the planet.

- Google does that regularly!
- There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:

- how do we distribute work across all those computers?
- you definitely can't use shared-memory parallelism because the computers don't share memory!
- when you use 1 computer, you just hope it doesn't fail. If it does, you go to the store, buy a new one and restart the job.
- when you use 1000s of computers at a time, failures become the norm. what to do when 1 of 1000 computers fail? Start over?

Big Jobs ---> Better Abstractions

Need high-level interfaces to shield application programmers from the complex details. Complex implementations solve the problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences Example bulk operations: create, map, reduce, join, filter

COMPLEXITY OF PARALLEL ALGORITHMS

dependence:

x = 1 + 2 happens before 3 + x

<u>Execution of dependency diagrams:</u> A processor can only begin executing the computation associated with a block when the computations of all of its predecessor blocks have been completed.

step 1: execute first block

Cost so far: 0

step 1: execute first block

Cost so far: 1

step 2:
execute second block
because all of its
predecessors have
been completed

Cost so far: 1

step 2:
execute second block
because all of its
predecessors have
been completed

Cost so far: 1 + 1

$$(1 + 2 || f 3)$$

parallel pair: compute both left and right-hand sides independently return pair of values (easy to implement using futures)

Suppose we have 1 processor. How much time does this computation take?

Suppose we have 1 processor. How much time does this computation take? Schedule A-B-C-D: 1 + 1 + 7 + 1

Suppose we have 1 processor. How much time does this computation take? Schedule A-C-B-D: 1 + 1 + 7 + 1

Suppose we have 2 processors. How much time does this computation take?

Suppose we have 2 processors. How much time does this computation take? Cost so far: 1

Suppose we have $\frac{2}{7}$ processors. How much time does this computation take? Cost so far: $1 + \max(1,7)$

Suppose we have 2 processors. How much time does this computation take? Cost so far: $1 + \max(1,7) + 1$

Suppose we have 2 processors. How much time does this computation take? Total cost: $1 + \max(1,7) + 1$. We say the *schedule* we used was: A-CB-D

Suppose we have 3 processors. How much time does this computation take?

Suppose we have 3 processors. How much time does this computation take? Schedule A-BC-D: $1 + \max(1,7) + 1 = 9$

Suppose we have infinite processors. How much time does this computation take? Schedule A-BC-D: $1 + \max(1,7) + 1 = 9$

Work and Span

Understanding the complexity of a parallel program is a little more complex than a sequential program

the number of processors has a significant effect

One way to *approximate* the cost is to consider a parallel algorithm independently of the machine it runs on is to consider *two* metrics:

- Work: The cost of executing a program with just 1 processor.
- Span: The cost of executing a program with an infinite number of processors

Always good to minimize work

- Every instruction executed consumes energy
- Minimize span as a second consideration
- Communication costs are also crucial (we are ignoring them)

Parallelism

The parallelism of an algorithm is an estimate of the maximum number of processors an algorithm can profit from.

parallelism = work / span

If work = span then parallelism = 1.

- We can only use 1 processor
- It's a sequential algorithm

If span = $\frac{1}{2}$ work then parallelism = 2

We can use up to 2 processors

If work = 100, span = 1

- All operations are independent & can be executed in parallel
- We can use up to 100 processors

Series-Parallel Graphs

Series-parallel graphs arise from execution of functional programs with parallel pairs. Also known as well-structured, nested parallelism.

Parallel Pairs

let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)

Series-Parallel Graphs Compose

In general, a series-parallel graph has a source and a sink and is:

- a single node, or
- two series-parallel graphs in sequence, or
- two series-parallel graphs in parallel

Not a Series-Parallel Graph

However:
The results about greedy schedulers (next few slides)
do apply to DAG schedules as well as series-parallel schedules!

Work and Span of Acyclic Graphs

Let's assume each node costs 1.

Work and Span of Acyclic Graphs

Scheduling

Scheduling

Scheduling

Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!

Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):

- T(p) < work/p + span
 - won't be worse than dividing up the data perfectly between processors, except for the last little bit, which causes you to add the span on top of the perfect division
- T(p) >= max(work/p, span)
 - can't do better than perfect division between processors (work/p)
 - can't be faster than span

Greedy Schedulers

Properties (for p processors):

Consequences:

- as span gets small relative to work/p
 - work/p + span ==> work/p
 - max(work/p, span) ==> work/p
 - so T(p) ==> work/p -- greedy schedulers converge to the optimum!
- if span approaches the work
 - work/p + span ==> span
 - max(work/p, span) ==> span
 - so T(p) ==> span greedy schedulers converge to the optimum!

And therefore

Even though greedy schedulers are simple to implement,

they can be effective in building a parallel programming system.

and

This *supports* the idea that **work and span** are useful ways to reason about the cost of parallel programs.

PARALLEL SEQUENCES

Parallel Sequences

Parallel sequences

Operations:

- creation (called tabulate)
- indexing an element in constant span
- map
- scan -- like a fold: <u, u + e1, u + e1 + e2, ...> log n span!

Languages:

- Nesl [Blelloch]
- Data-parallel Haskell

Parallel Sequences: Selected Operations

```
tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)
```

Parallel Sequences: Selected Operations

```
tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)
```

Parallel Sequences: Selected Operations

```
tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)
```

Write a function that creates the sequence <0, ..., n-1> with Span = O(1) and Work = O(n).

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function that creates the sequence <0, ..., n-1> with Span = O(1) and Work = O(n).

```
(* create n == <0, 1, ..., n-1> *)
let create n =
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function that creates the sequence <0, ..., n-1> with Span = O(1) and Work = O(n).

```
(* create n == <0, 1, ..., n-1> *)
let create n =
  tabulate (fun i -> i) n
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence < v0, ..., vn-1>, maps f over each element of the sequence with Span = O(1) and Work = O(n), returning the new sequence (if f is constant work)

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence < v0, ..., vn-1>, maps f over each element of the sequence with Span = O(1) and Work = O(n), returning the new sequence (if f is constant work)

```
(* map f < v0, ..., vn-1> == < f v0, ..., f vn-1> *) let map f s =
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence < v0, ..., vn-1>, maps f over each element of the sequence with Span = O(1) and Work = O(n), returning the new sequence (if f is constant work)

```
(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =
  tabulate (fun i -> f (nth s i)) (length s)
```

```
Work Span tabulate f n n 1 nth i s 1 1 length s 1 1
```

Write a function such that given a sequence $\langle v0, ..., vn-1 \rangle$, reverses the sequence. with Span = O(1) and Work = O(n)

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence $\langle v0, ..., vn-1 \rangle$, reverses the sequence. with Span = O(1) and Work = O(n)

```
(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence $\langle v0, ..., vn-1 \rangle$, reverses the sequence. with Span = O(1) and Work = O(n)

```
(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
  let n = length s in
  tabulate (fun i -> nth s (n-i-1)) n
```

```
Work Span tabulate f n n 1 nth i s 1 1 length s 1 1
```

A Parallel Sequence API

type 'a seq	<u>Work</u>	<u>Span</u>
tabulate : (int -> 'a) -> int -> 'a seq	O(N)	O(1)
length : 'a seq -> int	O(1)	O(1)
nth : 'a seq -> int -> 'a	O(1)	O(1)
append: 'a seq -> 'a seq -> 'a seq (can build this from tabulate, nth, length)	O(N+M)	O(1)
split : 'a seq -> int -> 'a seq * 'a seq	O(N)	O(1)

For efficient implementations, see Blelloch's NESL project: http://www.cs.cmu.edu/~scandal/nesl.html


```
let sum_all (l:int list) = reduce (+) 0 1
```

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:


```
let sum_all (l:int list) = reduce (+) 0 l
```

<u>Key to parallelization:</u> Notice that because sum is an *associative* operator, we do not have to add the elements strictly left-to-right:

$$(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)$$

Side Note

The key is *associativity*:

$$((((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)$$
add on processor 1 add on processor 2

Commutativity not needed!

Commutativity allows us to reorder the elements:

$$v1 + v2 == v2 + v1$$

But we don't have to reorder elements to obtain a significant speedup; we just have to reorder the execution of the operations.

Parallel Sum

Parallel Sum

Parallel Sum

let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)

Parallel Reduce

If op is associative and the base case has the properties:

then the parallel reduce is equivalent to the sequential left-to-right fold.

Parallel Reduce

Parallel Reduce

```
let sum s = reduce (+) 0 s
```

A little more general

```
let rec mapreduce (inject: 'a -> 'b)
                    (combine: 'b -> 'b -> 'b)
                    (base: 'b)
                    (s:'a seq) =
  match length s with
    0 -> base
  \mid 1 - \rangle inject (nth s 0)
  | n ->
      let (s1,s2) = split (n/2) s in
      let (n1, n2) = both
                       (mapreduce inject combine base) s1
                       (mapreduce inject combine base) s2 in
      combine n1 n2
```

A little more general

```
let rec mapreduce (inject: 'a -> 'b)
                    (combine: 'b -> 'b -> 'b)
                    (base: 'b)
                    (s:'a seq) =
  match length s with
    0 -> base
  \mid 1 \rightarrow inject (nth s 0)
  | n ->
      let (s1,s2) = split (n/2) s in
      let (n1, n2) = both
                        (mapreduce inject combine base) s1
                        (mapreduce inject combine base) s2 in
      combine n1 n2
```

DON'T PARALLELIZE AT TOO FINE A GRAIN

Parallel Reduce with Sequential Cut-off

When data is small, the overhead of parallelization isn't worth it. Revert to the sequential version!

```
let sequential_reduce f base (s:'a seq) =
  let rec g i x =
    if i<0 then x else g (i-1) (f (nth a i) x)
  in g (length s - 1)</pre>
```

BALANCED PARENTHESES

The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:

```
balanced: ()()(())
not balanced: (
not balanced: )(
not balanced: ()))
```

We will try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

fold from left to right, keep track of # of unmatched left parens

0

fold from left to right, keep track of # of unmatched left parens

0 1

fold from left to right, keep track of # of unmatched left parens

0 1 2

fold from left to right, keep track of # of unmatched left parens

Warning! This solution does not generalize to a parallel map/reduce!

fold from left to right, keep track of # of unmatched left parens

Warning! This solution does not generalize to a parallel map/reduce!

fold from left to right, keep track of # of unmatched left parens

too many right parens indicates no match

if you reach the end of the end of the sequence, you should have no unmatched left parens

Easily Coded Using a Fold


```
let rec fold f b s =
  let rec aux n accum =
    if n >= length s then
      accum
    else
      aux (n+1) (f (nth s n) accum)
  in
  aux 0 b
```

Easily Coded Using a Fold

```
(* check to see if we have too many unmatched R parens
   so far: number of unmatched parens so far
           or None if we have seen too many R parens
*)
let check (p:paren) (so far:int option) : int option =
 match (p, so far) with
    ( , None) -> None
  | (L, Some c) -> Some (c+1)
  (R, Some 0) -> None (* violation detected *)
  | (R, Some c) -> Some (c-1)
```

Easily Coded Using a Fold

```
let fold f base s = ...
let check so_far s = ...
let balanced (s: paren seq) : bool =
  match fold check (Some 0) s with
     Some 0 -> true
  | (None | Some n) -> false
```

That was easy enough. But the "check" function is not associative, that means it can't be used in a parallel "reduce".

That's what I was warning about!

Key insights

 if you find () in a sequence, you can delete it without changing the balance

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:

```
• ))) ... j ... ))) ((( ... k ... (((
```

For divide-and-conquer, splitting a sequence of parens is easy Combining two sequences where we have deleted all ():

```
- ))) ... j ... ))) ((( ... k ... ((( ))) ... x ... ))) ((( ... y ... (((
```

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:

```
• ))) ... j ... ))) ((( ... k ... (((
```

For divide-and-conquer, splitting a sequence of parens is easy Combining two sequences where we have deleted all ():

```
((( ... k ... ((( ))) ... x ... ))) ((( ... y ... ((( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... ( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( .. (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ... (( ...
```

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:

```
• ))) ... j ... ))) ((( ... k ... (((
```

For divide-and-conquer, splitting a sequence of parens is easy Combining two sequences where we have deleted all ():

```
- ))) ... j ... ))) ((( ... k ... ((( ))) ... x ... ))) ((( ... y ... (((
```

- if $x \ge k$ then))) ... j ...)))))) ... x k ...))) (((... y ... (((
- if x ≤ k then))) ... j ...))) (((... k x ... ((((((... y ... (((

Parallel Matcher

```
(* delete all () and return the (j, k) corresponding to:
    ))) ... j ... ))) ((( ... k ... (((
 *)
let rec matcher s =
    match length s with
       0 \rightarrow (0, 0)
                                        ))) ... j ... ))) ((( ... k ... (((
     | 1 - \rangle (match nth s 0 with
                                          ))) ... x ... ))) ((( ... y ... (((
              | L -> (0, 1)
              | R -> (1, 0) |
     | n ->
        let (left, right) = split (n/2) s in
        let ((j, k), (x, y)) = both matcher left
                                        matcher right in
        if x > k
        then (j + (x - k), y)
        else (j, (k - x) + y)
```

Parallel Balance

```
(* *)
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =
    match matcher s with
    | (0, 0) -> true
    | (j,k) -> false
```

Parallel Matcher

```
(* delete all () and return the (j, k) corresponding to:
    ))) ... j ... ))) ((( ... k ... (((
 *)
let rec matcher s =
                                This looks just like mapreduce!
    match length s with
      0 \rightarrow (0, 0)
    | 1 - \rangle (match nth s 0 with
             | L -> (0, 1)
             | R -> (1, 0) |
    | n ->
       let (left, right) = split (n/2) s in
       let ((j, k), (x, y)) = both matcher left
                                     matcher right in
       if x > k
       then (j + (x - k), y)
       else (j, (k - x) + y)
```

Using a Parallel Fold

```
L \rightarrow (0, 1)
  | R -> (1, 0)
let combine (j,k) (x,y) =
      if x > k then (j + (x - k), y)
           (j, (k - x) + y)
      else
let balanced s =
   match mapreduce inject combine (0,0) s with
    | (0, 0) -> true
    | (i,j) -> false
```

Using a Parallel Fold

```
let rec mapreduce(inject: 'a -> 'b)
                  (combine: 'b -> 'b -> 'b)
                   (base: 'b)
                  (s:'a seq) = ...
let inject paren =
  match paren with
    L \rightarrow (0, 1)
  | R -> (1, 0)
let combine (j,k) (x,y) =
      if x > k then (j + (x - k), y)
                                              Work: O(N)
                     (j, (k - x) + y)
      else
                                             Span: O(log N)
let balanced s =
    match mapreduce inject combine (0,0) s with
    | (0, 0) -> true
    | (i,j) -> false
```

Using a Parallel Fold

```
let rec mapreduce(inject: 'a -> 'b)
                   (combine: 'b -> 'b -> 'b)
                   (base: 'b)
                   (s:'a seq) = ...
                             For correctness,
let inject paren = ,
                         check the associativity
  match paren with
                              of combine
    L \rightarrow (0, 1)
                                           also check:
  | R -> (1, 0)
                                     combine base (i,j) == (i, j)
let combine (j,k) (x,y) =
      if x > k then (j + (x - k), y)
            (j, (k - x) + y)
      else
let balanced s =
    match mapreduce inject combine (0,0) s with
    | (0, 0) -> true
    | (i,j) -> false
```

Summary

Parallel complexity can be described in terms of work and span

Folds and reduces are easily coded as parallel divide-and-conquer algorithms with O(n) work and O(log n) span

The map-reduce paradigm, inspired by functional programming, is a winner when it comes to big-data processing (more about that in the next lecture).

Sanity checks

```
let combine (j,k) (x,y) = if x > k then <math>(j + (x - k), y) else (j, (k - x) + y)
base = (0,0)
```

check the associativity of combine

also check: combine base (i,j) == (i, j)

Prove for yourself:

combine (combine (j,k)(x,y)) (a,b) = combine(j,k)(combine(x,y)(a,b))

combine (j,k) (0,0) = (j,k)

combine (0,0)(j,k) = (j,k)