Programming with shared mutable data is very hard!

How can we leverage

- pure functions
- immutable data
- function composition
to write large-scale parallel programs?

Fujitsu A64FX (48 ARM cores)
What if you had a really big job to do?

Example: Create an index of every web page on the planet.
- Google does that regularly!
- There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:
- how do we distribute work across all those computers?
- you definitely can't use shared-memory parallelism because the computers don't share memory!
- when you use 1 computer, you just hope it doesn't fail. If it does, you go to the store, buy a new one and restart the job.
- when you use 1000s of computers at a time, failures become the norm. what to do when 1 of 1000 computers fail? Start over?
Need high-level interfaces to shield application programmers from the complex details. Complex implementations solve the problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter
COMPLEXITY OF PARALLEL ALGORITHMS
let x = 1 + 2 in
3 + x
dependence:
x = 1 + 2 happens before 3 + x
Execution of dependency diagrams: A processor can only begin executing the computation associated with a block when the computations of all of its predecessor blocks have been completed.
step 1: execute first block

\[
x = 1 + 2
\]

\[
3 + x
\]

Cost so far: 0
step 1:
execute first block

Cost so far: 1
step 2: execute second block because all of its predecessors have been completed

Cost so far: 1
step 2: execute second block because all of its predecessors have been completed

Cost so far: 1 + 1
let x = 1 + 2 in
3 + x

\[
\begin{align*}
\text{let } x &= 1 + 2 \\
3 + x &\quad \text{cost} = 1 \\
\end{align*}
\]

\[
\begin{align*}
\left. \begin{array}{c}
\text{total cost} \\
= 1 + 1 \\
= 2 \\
\end{array} \right\}
\end{align*}
\]
parallel pair:
compute both left and right-hand sides independently
return pair of values
(easy to implement using futures)
(1 + 2 || f 3)

Visualizing Computational Costs

A

cost = 1

B

cost = 1

1 + 2

C

f 3

cost = 7

D

(,)

cost = 1
Suppose we have 1 processor. How much time does this computation take?
Suppose we have 1 processor. How much time does this computation take? Schedule A-B-C-D: 1 + 1 + 7 + 1
Suppose we have 1 processor. How much time does this computation take? Schedule A-C-B-D: 1 + 1 + 7 + 1
Suppose we have 2 processors. How much time does this computation take?
Suppose we have 2 processors. How much time does this computation take? Cost so far: 1
Suppose we have 2 processors. How much time does this computation take? Cost so far: $1 + \max(1,7)$
Suppose we have 2 processors. How much time does this computation take? Cost so far: 1 + max(1, 7) + 1
Suppose we have 2 processors. How much time does this computation take?

Total cost: $1 + \max(1,7) + 1$. We say the *schedule* we used was: A-CB-D.
Suppose we have 3 processors. How much time does this computation take?
Suppose we have 3 processors. How much time does this computation take?
Schedule A-BC-D: $1 + \max(1,7) + 1 = 9$
Suppose we have *infinite processors*. How much time does this computation take? Schedule A-BC-D: $1 + \max(1,7) + 1 = 9$
Understanding the complexity of a parallel program is a little more complex than a sequential program

– the number of processors has a significant effect

One way to approximate the cost is to consider a parallel algorithm independently of the machine it runs on is to consider two metrics:

– **Work**: The cost of executing a program with just 1 processor.
– **Span**: The cost of executing a program with an infinite number of processors

Always good to minimize work

– Every instruction executed consumes energy
– Minimize span as a second consideration
– Communication costs are also crucial (we are ignoring them)
The **parallelism** of an algorithm is an estimate of the maximum number of processors an algorithm can profit from.

- parallelism = work / span

If work = span then parallelism = 1.
- We can only use 1 processor
- It's a sequential algorithm

If span = ½ work then parallelism = 2
- We can use up to 2 processors

If work = 100, span = 1
- All operations are independent & can be executed in parallel
- We can use up to 100 processors
Series-parallel graphs arise from execution of functional programs with parallel pairs. Also known as well-structured, nested parallelism.
let both \(f \ x \ g \ y = \)
let \(ff = \) future \(f \ x \) in
let \(gv = g \ y \) in
(force \(ff, gv \))
In general, a series-parallel graph has a source and a sink and is:

- a single node, or
- two series-parallel graphs in sequence, or
- two series-parallel graphs in parallel
Not a Series-Parallel Graph

However:
The results about greedy schedulers (next few slides) do apply to DAG schedules as well as series-parallel schedules!
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from source to sink.
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from source to sink.

work = 10
span = 5
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
Let's assume each node costs 1.
Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
I
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:

A
B G
C D
E H
I
J

F

鲜尘
Let's assume each node costs 1.
Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
F I J

Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
H I
J
F
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
I
E J
F
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
H J
I
F

F
Let's assume each node costs 1.
Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
F
G
H I
J
F

Conclusion: How you schedule jobs can have an impact on performance.
Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!
Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):

– \(T(p) < \frac{\text{work}}{p} + \text{span} \)
 • won't be worse than dividing up the data perfectly between processors, except for the last little bit, which causes you to add the span on top of the perfect division

– \(T(p) \geq \max(\frac{\text{work}}{p}, \text{span}) \)
 • can't do better than perfect division between processors (\(\frac{\text{work}}{p} \))
 • can't be faster than span
Greedy Schedulers

Properties (for p processors):
\[
\max(\text{work}/p, \text{span}) \leq T(p) < \frac{\text{work}}{p} + \text{span}
\]

Consequences:

- as span gets small relative to work/p
 - \(\frac{\text{work}}{p} + \text{span} \Rightarrow \frac{\text{work}}{p}\)
 - \(\max(\frac{\text{work}}{p}, \text{span}) \Rightarrow \frac{\text{work}}{p}\)
 - so \(T(p) \Rightarrow \frac{\text{work}}{p}\) -- greedy schedulers converge to the optimum!

- if span approaches the work
 - \(\frac{\text{work}}{p} + \text{span} \Rightarrow \text{span}\)
 - \(\max(\frac{\text{work}}{p}, \text{span}) \Rightarrow \text{span}\)
 - so \(T(p) \Rightarrow \text{span}\) – greedy schedulers converge to the optimum!
Even though greedy schedulers are simple to implement, they can be effective in building a parallel programming system.

and

This supports the idea that work and span are useful ways to reason about the cost of parallel programs.
PARALLEL SEQUENCES
Parallel Sequences

Parallel sequences

\(< e_1, e_2, e_3, \ldots, e_n >\)

Operations:
- creation (called \textit{tabulate})
- indexing an element in constant span
- map
- scan -- like a fold: \(<u, u + e_1, u + e_1 + e_2, \ldots>\) \(\log n\) span!

Languages:
- Nesl [Blelloch]
- Data-parallel Haskell
tabulate : (int -> 'a) -> int -> 'a seq

\[\text{tabulate } f \ n = \langle f \ 0, f \ 1, \ldots, f \ (n-1) \rangle \]

work = \(O(n) \) \quad \text{span} = \(O(1) \)
tabulate : (int -> 'a) -> int -> 'a seq

```
tabulate f n  == <f 0, f 1, ..., f (n-1)>
work = O(n)    span = O(1)
```

nth : 'a seq -> int -> 'a

```
nth <e0, e1, ..., e(n-1) > i == ei
work = O(1)    span = O(1)
```
Parallel Sequences: Selected Operations

tabulate: \(\text{(int -> 'a)} \rightarrow \text{int} \rightarrow 'a\text{ seq} \)

\[
\text{tabulate} \ f \ n \ =\ <f \ 0, \ f \ 1, \ ..., \ f \ (n-1)>
\]

\(\text{work} = O(n) \quad \text{span} = O(1) \)

nth: \('a\text{ seq} \rightarrow \text{int} \rightarrow 'a \)

\[
\text{nth} \ <e0, \ e1, \ ..., \ e(n-1)> \ i \ =\ e_i
\]

\(\text{work} = O(1) \quad \text{span} = O(1) \)

length: \('a\text{ seq} \rightarrow \text{int} \)

\[
\text{length} \ <e0, \ e1, \ ..., \ e(n-1)> \ =\ n
\]

\(\text{work} = O(1) \quad \text{span} = O(1) \)
Example Problems

Write a function that creates the sequence \(<0, \ldots, n-1> \) with Span = \(O(1) \) and Work = \(O(n) \).

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function that creates the sequence \(<0, \ldots, n-1>\) with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\).

```plaintext
(* create n == <0, 1, ..., n-1> *)
let create n =
```

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function that creates the sequence \(<0, ..., n-1>\) with Span = O(1) and Work = O(n).

(* create n == <0, 1, ..., n-1> *)
let create n =
 tabulate (fun i -> i) n

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, ..., v_{n-1}>\), maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate (f) (n)</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>(n)th (i) (s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length (s)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, ..., v_{n-1}>\), maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work)

\[
(* \text{map } f \text{ <v0, ..., vn-1> } == \text{<f v0, ..., f vn-1> } *)
\]

\[
\text{let map } f \text{ s } =
\]

Operations:

\[
\begin{array}{|c|c|c|}
\hline
\text{tabulate } f \text{ n} & \text{Work} & \text{Span} \\
\hline
n & 1 & 1 \\
\hline
\text{nth } i \text{ s} & 1 & 1 \\
\hline
\text{length } s & 1 & 1 \\
\hline
\end{array}
\]
Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}>\),
maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and
\(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work).

\[
(*) \text{ map } f \text{ } <v_0, \ldots, v_{n-1}> \text{ == } <f \text{ } v_0, \ldots, f \text{ } v_{n-1}> \text{ *)}
\]

```plaintext
let map f s =
    tabulate (fun i -> f (nth s i)) (length s)
```

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, ..., v_{n-1}>\), reverses the sequence. with Span = O(1) and Work = O(n)

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Write a function such that given a sequence <v0, ..., vn-1>, reverses the sequence. with Span = O(1) and Work = O(n)

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}>\), reverses the sequence. with Span = \(O(1)\) and Work = \(O(n)\)

\[
(* \text{ reverse } <v_0, \ldots, v_{n-1}> == <v_{n-1}, \ldots, v_0> *)
\]

let reverse s =
 let n = length s in
 tabulate (fun i -> nth s (n-i-1)) n

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A Parallel Sequence API

type 'a seq

<table>
<thead>
<tr>
<th>Function</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>length</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>nth</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>append</td>
<td>O(N+M)</td>
<td>O(1)</td>
</tr>
<tr>
<td>split</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

For efficient implementations, see Blelloch's NESL project:
http://www.cs.cmu.edu/~scandal/nesl.html
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

\[
\text{sum: } 0
\]

\[
\begin{array}{cccccc}
7 & 4 & 3 & 9 & 8 \\
\end{array}
\]
Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
7 4 3 9 8
```

sum: 0 → 7
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
 7 4 3 9 8
sum: 31
```
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
let sum_all (l:int list) = reduce (+) 0 l
```

```
7  4  3  9  8

sum: 0 7 11 14 23 31
```
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
let sum_all (l:int list) = reduce (+) 0 l
```

Key to parallelization: Notice that because sum is an associative operator, we do not have to add the elements strictly left-to-right:

\[
((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)
\]
The key is **associativity**:

\[((init + v1) + v2) + v3) + v4) + v5) \text{ == } ((init + v1) + v2) + (v3 + v4) + v5\]

Commutativity not needed!

Commutativity allows us to reorder the elements:

\[v1 + v2 \text{ == } v2 + v1\]

But we don't have to reorder elements to obtain a significant speedup; we just have to reorder the execution of the operations.
Parallel Sum
Parallel Sum

36

+

16

+

9

+

2

7

+

4

3

17

+

9

8

2

1
let rec psum (s : int seq) : int =
 match length s with
 0 -> 0
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (a1, a2) = both psum s1 psum s2 in
 a1 + a2

let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)
If \(\text{op} \) is associative and the base case has the properties:

\[
\text{op base } X = X \quad \text{and} \quad \text{op } X \text{ base } = X
\]

then the parallel reduce is equivalent to the sequential left-to-right fold.
let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match length s with
 0 -> base
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2
let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match length s with
 | 0 -> base
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

let sum s = reduce (+) 0 s
let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =

match length s with
 0 -> base
| 1 -> inject (nth s 0)
| n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both
 (mapreduce inject combine base) s1
 (mapreduce inject combine base) s2 in
 combine n1 n2
let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =

match length s with
 0 -> base
| 1 -> inject (nth s 0)
| n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both
 (mapreduce inject combine base) s1
 (mapreduce inject combine base) s2 in
 combine n1 n2

let average s =
let (count, total) =
 mapreduce (fun x -> (1,x))
 (fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
 (0,0) s in
 if count = 0 then 0 else total / count
DON’T PARALLELIZE
AT TOO FINE A GRAIN
Parallel Reduce with Sequential Cut-off

When data is small, the overhead of parallelization isn't worth it. Revert to the sequential version!

```ocaml
let SHORT = 1000

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
  if length s < SHORT
  then sequential_reduce f base s
  else let (s1,s2) = split ((length s)/2) s in
       let (n1, n2) = both (reduce f base) s1
                                (reduce f base) s2 in
       f n1 n2

let sequential_reduce f base (s:'a seq) =
  let rec g i x =
    if i<0 then x else g (i-1) (f (nth a i) x)
  in g (length s – 1)
```
BALANCED PARENTHESES
The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:

- balanced: ()()(()
- not balanced: (
- not balanced: ()
- not balanced: ()())

We will try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

type paren = L | R (* L(eft) or R(ight) paren *)

let balanced (ps : paren seq) : bool = ...
First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

0

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1 2

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

0 1 2 1

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

too many right parens indicates no match
First, a sequential approach

if you reach the end of the sequence, you should have no unmatched left parens
Easily Coded Using a Fold

let rec fold f b s =
 let rec aux n accum =
 if n >= length s then
 accum
 else
 aux (n+1) (f (nth s n) accum)
 in
 aux 0 b
Easily Coded Using a Fold

```ocaml
let check (p:paren) (so_far:int option) : int option =
  match (p, so_far) with
  (_, None) -> None
| (L, Some c) -> Some (c+1)
| (R, Some 0) -> None (* violation detected *)
| (R, Some c) -> Some (c-1)
```

(* check to see if we have too many unmatched R parens

so_far : number of unmatched parens so far
 or None if we have seen too many R parens *)
Easily Coded Using a Fold

```plaintext
let fold f base s = ... 

let check so_far s = ... 

let balanced (s: paren seq) : bool = 
  match fold check (Some 0) s with 
  Some 0 -> true
  | (None | Some n) -> false
```

That was easy enough. But the “check” function is not associative, that means it can’t be used in a parallel “reduce”.

That’s what I was warning about!
Key insights

- if you find () in a sequence, you can delete it without changing the balance
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) ((((... k ... (((}
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (, you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Key insights

- if you find () in a sequence, you can delete it without changing the balance

- if you have deleted all of the pairs (), you are left with:
 -)))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

-)))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if \(x \geq k \) then))) ... j ...)))))) ... x − k ...))) (((... y ... (((
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if \(x \geq k \) then))) ... j ...)))))) ... x – k ...))) (((... y ... (((

– if \(x \leq k \) then))) ... j ...))) (((... k – x ... ((((((... y ... (((
let rec matcher s =
 match length s with
 0 -> (0, 0)
 | 1 -> (match nth s 0 with
 | L -> (0, 1)
 | R -> (1, 0))
 | n ->
 let (left, right) = split (n/2) s in
 let ((j, k), (x, y)) = both matcher left
 matcher right in
 if x > k
 then (j + (x - k), y)
 else (j, (k - x) + y)
(* *
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =
 match matcher s with
 | (0, 0) -> true
 | (j,k) -> false
let rec matcher s =
 match length s with
 0 -> (0, 0)
 | 1 -> (match nth s 0 with
 | L -> (0, 1)
 | R -> (1, 0))
 | n ->
 let (left, right) = split (n/2) s in
 let ((j, k), (x, y)) = both matcher left
 matcher right in
 if x > k
 then (j + (x - k), y)
 else (j, (k - x) + y)

This looks just like mapreduce!
Using a Parallel Fold

let rec mapreduce (inject: 'a -> 'b)
 (combine: 'b -> 'b -> 'b)
 (base: 'b)
 (s: 'a seq) = ...

let inject paren =
 match paren with
 | L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x - k), y)
 else (j, (k - x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false
let rec mapreduce (inject: 'a -> 'b) (combine: 'b -> 'b -> 'b) (base: 'b) (s: 'a seq) = ...
let rec mapreduce (inject: 'a -> 'b) (combine: 'b -> 'b -> 'b) (base: 'b) (s: 'a seq) = ...

let inject paren = match paren with
 | L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) = if x > k then (j + (x - k), y) else (j, (k - x) + y)

let balanced s = match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

For correctness, check the associativity of combine
also check: combine base (i,j) == (i, j)
Parallel complexity can be described in terms of work and span.

Folds and reduces are easily coded as parallel divide-and-conquer algorithms with $O(n)$ work and $O(\log n)$ span.

The map-reduce paradigm, inspired by functional programming, is a winner when it comes to big-data processing (more about that in the next lecture).
Sanity checks

let combine \((j,k) (x,y)\) =
 if \(x > k\) then \((j + (x - k), y)\)
 else \((j, (k - x) + y)\)

base = (0,0)

check the associativity of combine

also check:
combine base \((i,j)\) == \((i, j)\)

Prove for yourself:

combine (combine \((j,k) (x,y)\)) \((a,b)\) = combine \((j,k) (combine \((x,y)(a,b))\)

combine \((j,k) (0,0)\) = \((j,k)\)

combine \((0,0) (j,k)\) = \((j,k)\)