
Type Inference

COS 326
David Walker

Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Last Time: ML Polymorphism
The type for map looks like this:

This type includes an implicit quantifier at the outermost level.
So really, map’s type is this one:

To use a value with type forall ‘a,’b,’c . t, we first substitute types
for parameters ‘a, ‘b, c’. eg:

map : (‘a -> ‘b) -> ‘a list -> ‘b list

map : forall ‘a, ‘b. (‘a -> ‘b) -> ‘a list -> ‘b list

map (fun x -> x + 1) [2;3;4] here, we substitute [int/’a][int/’b]
in map’s type and then use map at type
(int -> int) -> int list -> int list

Last Time
Type Checking (Simple Types)
A function check : context -> exp -> type

• requires function arguments to be annotated with types
• specified using formal rules. eg, the rule for function call:

G |- e1 : t1 -> t2 G |- e2 : t1
G |- e1 e2 : t2

Type Schemes
A type scheme contains type variables that may be filled in
during type inference

s ::= a | int | bool | s -> s

A term scheme is a term that contains type schemes rather than
proper types. eg, for functions:

fun (x:s) -> e

let rec f (x:s) : s = e

Two Algorithms for Inferring Types

Algorithm 1:
• Declarative; generates constraints to be solved later
• Easier to understand
• Easier to prove correct
• Less efficient, not used in practice

Algorithm 2:
• Imperative; solves constraints and updates as-you-go
• Harder to understand
• Harder to prove correct
• More efficient, used in practice
• See: http://okmij.org/ftp/ML/generalization.html

Algorithm 1
1) Add distinct variables in all places type schemes are needed

6

f e -- f's argument type must equal e

(a -> b) = c

2) Generate constraints (equations between types) that must be
satisfied in order for an expression to type check

• Notice the difference between this and the type checking
algorithm from last time. Last time, we tried to:
• eagerly deduce the concrete type when checking every expression
• reject programs when types didn't match. eg:

• This time, we'll collect up equations like:

3) Solve the equations, generating substitutions of types for var's

Example: Inferring types for map

let rec map f l =

match l with

[] -> []

| hd::tl -> f hd :: map f tl

Step 1: Annotate

let rec map (f:a) (l:b) : c =

match l with

[] -> []

| (hd:d)::(tl:g) ->

f hd :: map f tl

Step 2: Generate Constraints

let rec map (f:a) (l:b) : c =

match l with

[] -> []

| (hd:d)::(tl:g) ->

f hd :: map f tl

b = d list

a = d -> e

...

Step 2: Generate Constraints

let rec map (f:a) (l:b) : c =

match l with

[] -> []

| hd::tl -> f hd :: map f tl
b = b’ list

b = b’’ list

b = b’’’ list
a = a

b = b’’’ list

a = b’’ -> a’

c = c’ list

a’ = c’

d list = c’ list
d list = c

final constraints:

Step 3: Solve Constraints

let rec map (f:a) (l:b) : c =

match l with

[] -> []

| hd::tl -> f hd :: map f tl

b = b’ list

b = b’’ list

b = b’’’ list
a = a

b = b’’’ list

a = b’’ -> a’

c = c’ list

a’ = c’

d list = c’ list
d list = c

final constraints:
[b' -> c'/a]

[b' list/b]

[c' list/c]

final solution:

Step 3: Solve Constraints

let rec map (f:a) (l:b) : c =

match l with

[] -> []

| hd::tl -> f hd :: map f tl

[b' -> c'/a]

[b' list/b]

[c' list/c]

final solution:

let rec map (f:b' -> c') (l:b' list) : c' list =

match l with

[] -> []

| hd::tl -> f hd :: map f tl

Step 3: Solve Constraints

let rec map (f:a) (l:b) : c =

match l with

[] -> []

| hd::tl -> f hd :: map f tl

let rec map (f: ’a -> ’b) (l: ’a list): ’b list =

match l with

[] -> []

| hd::tl -> f hd :: map f tl

renaming type variables:

Type Inference Details
Type constraints are sets of equations between type schemes

– q ::= {s11 = s12, ..., sn1 = sn2}

– e.g.: {b = b’ list, a = (b -> c)}

Constraint Generation
Syntax-directed constraint generation

– our algorithm crawls over abstract syntax of untyped
expressions and generates

• a term scheme
• a set of constraints

Constraint Generation
Syntax-directed constraint generation

– our algorithm crawls over abstract syntax of untyped
expressions and generates

• a term scheme
• a set of constraints

Algorithm defined as set of inference rules:
– G Ͱ u => e : t, q

context
annotated
expressionunannotated

expression

type (scheme)

constraints that must be solved

inputs outputs

Constraint Generation
Syntax-directed constraint generation

– our algorithm crawls over abstract syntax of untyped
expressions and generates

• a term scheme
• a set of constraints

Algorithm defined as set of inference rules:
– G Ͱ u => e : t, q

context
annotated
expressionunannotated

expression

type (scheme)

constraints that must be solved

gen : ctxt -> exp ->
ann_exp * scheme * constraints

in OCaml:

inputs outputs

Constraint Generation
Simple rules:

– G Ͱ x ==> x : s, { } (if G(x) = s)

– G Ͱ 3 ==> 3 : int, { } (same for other ints)

– G Ͱ true ==> true : bool, { }

– G Ͱ false ==> false : bool, { }

Operators

G Ͱ u1 ==> e1 : t1, q1 G Ͱ u2 ==> e2 : t2, q2
--
G Ͱ u1 + u2 ==> e1 + e2 : int, q1 U q2 U {t1 = int, t2 = int}

G Ͱ u1 ==> e1 : t1, q1 G Ͱ u2 ==> e2 : t2, q2
--
G Ͱ u1 < u2 ==> e1 < e2 : bool, q1 U q2 U {t1 = int, t2 = int}

If statements

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2
G Ͱ u3 ==> e3 : t3, q3
--
G Ͱ if u1 then u2 else u3 ==> if e1 then e2 else e3

: t2, q1 U q2 U q3 U {t1=bool, t2 = t3}

Function Application

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2 (for fresh a)
--
G Ͱ u1 u2==> e1 e2 : a, q1 U q2 U {t1 = t2 -> a}

Function Declaration

G, x : a Ͱ u ==> e : t, q (for fresh a)
--
G Ͱ fun x -> u ==> fun (x : a) -> e : a -> t, q

Function Declaration

G, f : a -> b, x : a Ͱ u ==> e : t, q (for fresh a,b)

G Ͱ rec f(x) = u ==> rec f (x : a) : b = e : a -> b, q U {t = b}

Summary: The type inference system

G, f : a -> b, x : a Ͱ u ==> e : t, q (for fresh a,b)

G Ͱ rec f(x) = u ==> rec f (x : a) : b = e : a -> b, q U {t = b}

G, x : a Ͱ u ==> e : t, q (for fresh a)
--
G Ͱ fun x -> u ==> fun (x : a) -> e : a -> t, q

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2 (for fresh a)
--
G Ͱ u1 u2==> e1 e2 : a, q1 U q2 U {t1 = t2 -> a}

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2
G Ͱ u3 ==> e3 : t3, q3
--
G Ͱ if u1 then u2 else u3 ==> if e1 then e2 else e3

: t2, q1 U q2 U q3 U {t1=bool, t2 = t3}

G Ͱ u1 ==> e1 : t1, q1 G Ͱ u2 ==> e2 : t2, q2
--
G Ͱ u1 + u2 ==> e1 + e2 : int, q1 U q2 U {t1 = int, t2 = int}

G Ͱ x ==> x : s, { } (if G(x) = s)

G Ͱ 3 ==> 3 : int, { }

Solving Constraints

A solution to a system of type constraints is a substitution S
– a function from type variables to types
– assume substitutions are defined on all type variables:

• S(a) = a (for almost all variables a)
• S(a) = s (for some type scheme s)

– dom(S) = set of variables s.t. S(a) ≠ a

Solving Constraints

A solution to a system of type constraints is a substitution S
– a function from type variables to type schemes
– assume substitutions are defined on all type variables:

• S(a) = a (for almost all variables a)
• S(a) = s (for some type scheme s)

– dom(S) = set of variables s.t. S(a) ≠ a

We can also apply a substitution S to a full type scheme s.

apply: [int/a, int->bool/b]

to: b -> a -> b

returns: (int->bool) -> int -> (int->bool)

Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

constraints:

Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

b -> (int -> bool)/a
int -> bool/c
b/b

constraints:

solution:

Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

b->(int->bool) / a
int->bool / c
b / b

b -> (int -> bool) = b -> (int -> bool)
int -> bool = int -> bool

constraints:

solution:

constraints with solution applied:

Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

A second solution

a = b -> c
c = int -> bool

b->(int->bool) / a
int->bool / c
b / b

constraints:

solution 1:

int->(int->bool) / a
int->bool / c
int / b

solution 2:

Substitutions

When is one solution better than another to a set of constraints?

a = b -> c
c = int -> bool

b->(int->bool) / a
int->bool / c
b / b

constraints:

solution 1:
int->(int->bool) / a
int->bool / c
int / b

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

Substitutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer solution 1.

solution 1: solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

b->(int->bool) / a
int->bool / c
b / b

int->(int->bool) / a
int->bool / c
int / b

Substitutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer the more general (less concrete) solution 1.
Technically, we prefer T to S if there exists another substitution U
and for all types t, S (t) = U (T (t))

b -> (int -> bool)/a
int -> bool/c
b/b

solution 1:
int -> (int -> bool)/a
int -> bool/c
int/b

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

Substitutions

There is always a best solution, which we can a principal solution.
The best solution is (at least as) preferred as any other solution.

b -> (int -> bool)/a
int -> bool/c
b/b

solution 1:
int -> (int -> bool)/a
int -> bool/c
int/b

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

Examples
Example 1

– q = {a=int, b=a}
– principal solution S:

Examples
Example 1

– q = {a=int, b=a}
– principal solution S:

• S(a) = S(b) = int
• S(c) = c (for all c other than a,b)

Examples
Example 2

– q = {a=int, b=a, b=bool}
– principal solution S:

Examples
Example 2

– q = {a=int, b=a, b=bool}
– principal solution S:

• does not exist (there is no solution to q)

Unification
Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)

– Unification systematically simplifies a set of constraints, yielding
a substitution

• Starting state of unification process: (I,q)
• Final state of unification process: (S, { })

Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

Unification

unify_step (S, {bool=bool} U q) = (S, q)

unify_step (S, {int=int} U q) = (S, q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

Unification

unify_step (S, {bool=bool} U q) = (S, q)

unify_step (S, {int=int} U q) = (S, q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

unify_step (S, {a=a} U q) = (S, q)

Unification

unify_step (S, {A -> B = C -> D} U q)

= (S, {A = C, B = D} U q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

Unification

unify_step (S, {A -> B = C -> D} U q)

= (S, {A = C, B = D} U q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

Unification

unify_step (S, {a=s} U q) = ([s/a] o S, [s/a]q)

when a is not in FreeVars(s)

Unification

unify_step (S, {a=s} U q) = ([s/a] o S, [s/a]q)

when a is not in FreeVars(s)

the substitution S’ defined to:
do S then substitute s for a

the constraints q’ defined to:
be like q except s replacing a

Occurs Check

Recall this program:

It generates the the constraints: a -> a = a

What is the solution to {a = a -> a}?

fun x -> x x

Occurs Check

Recall this program:

It generates the the constraints: a -> a = a

What is the solution to {a = a -> a}?

There is none!

Notice that a does appear in FreeVars(s)

Whenever a appears in FreeVars(s) and s is not just a,
there is no solution to the system of constraints.

fun x -> x x

Occurs Check

Recall this program:

It generates the the constraints: a -> a = a

What is the solution to {a = a -> a}?

There is none!

“when a is not in FreeVars(s)” is known as the “occurs check”

fun x -> x x

Summary: Unification Engine

(S, {bool=bool} U q) (S, q)

(S, {int=int} U q) (S, q)

(S, {a=a} U q) (S, q)

(S, {A->B = C->D} U q) (S, {A = C} U {B = D} U q)

(S, {a=s} U q) ([s/a] o S, [s/a]q) when a is not in FreeVars(s)

The value of a classics degree

51

John Alan Robinson
1930 – 2016

PhD Princeton 1956 (philosophy)
"Robinson was born in Yorkshire, England in 1930 and left for the United States in
1952 with a classics degree from Cambridge University. He studied philosophy at
the University of Oregon before moving to Princeton University where he received
his PhD in philosophy in 1956. He then worked at Du Pont as an operations
research analyst, where he learned programming and taught himself
mathematics. He moved to Rice University in 1961, spending his summers as a
visiting researcher at the Argonne National Laboratory's Applied Mathematics
Division. He moved to Syracuse University as Distinguished Professor of Logic and
Computer Science in 1967 and became professor emeritus in 1993."
--Wikipedia

Inventor (1960s) of algorithms
now fundamental to computational
logical reasoning (about software,
hardware, and other things…)

Irreducible States

Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { }) no constraints left.
S is the final solution!

Irreducible States

In the latter case, the program does not type check.

Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { }) no constraints left.
S is the final solution!

• or we find basic equations are inconsistent:
• int = bool
• s1->s2 = int
• s1->s2 = bool
• a = s (s contains a)

(or is symmetric to one of the above)

TYPE INFERENCE
MORE DETAILS

54

Generalization

Where do we introduce polymorphic values? Consider:

It is tempting to do something like this:

But recall the beginning of the lecture:
if we aren’t careful, we run into decidability issues

(fun x -> 3) : forall a. a -> int

g (fun x -> 3)

g : (forall a. a -> int) -> int

Generalization

Where do we introduce polymorphic values?

In ML languages: Only when values bound in ”let declarations”

g (fun x -> 3)

let f : forall a. a -> a = fun x -> 3 in
g f

No polymorphism for fun x -> 3!

Yes polymorphism for f!

Let Polymorphism

Where do we introduce polymorphic values?

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s
• and s has free variables a, b, c, ...
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type forall a, b, c. s

Let Polymorphism

Where do we introduce polymorphic values?

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s
• and s has free variables a, b, c, ...
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type forall a, b, c. s

That’s a hell of a lot more complicated than you
thought, eh?

Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A sensible type for f would be:

f : forall a. a -> a

Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A bad (unsound) type for f would be:

f : forall a, b. a -> b

Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A bad (unsound) type for f would be:

f : forall a, b. a -> b

(f true) + 7

goes wrong! but if f can have the bad type,
it all type checks. This counterexample to soundness shows
that f can’t possible be given the bad type safely

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

then we
can use y
as if it has
any type,
such as y : b

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

then we
can use y
as if it has
any type,
such as y : b

but now we have inferred that (fun x -> ...) : a -> b
and if we generalize again,
f : forall a,b. a -> b

That’s the bad type!

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

this was the bad step – y can’t really have
any type at all. Its type has got to be the same
as whatever the argument x is.

x was in the context when we tried to generalize y!

The Value Restriction

let x = v

this has got to be a value
to enable polymorphic
generalization

Unsound Generalization Again

let x = ref [] in x : forall a . a list ref

not a value!

Unsound Generalization Again

let x = ref [] in

x := [true];

x : forall a . a list ref

use x at type bool as if x : bool list ref

not a value!

Unsound Generalization Again

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : forall a . a list ref

use x at type bool as if x : bool list ref

use x at type int as if x : int list ref

and we crash

What does OCaml do?

let x = ref [] in x : '_weak1 list ref

a “weak” type variable
can’t be generalized

means “I don’t know
what type this is but
it can only be one
particular type”

look for the “_” to begin
a type variable name

What does OCaml do?

let x = ref [] in

x := [true];

x : '_weak1 list ref

x : bool list ref

the “weak” type variable
is now fixed as a bool
and can’t be anything else

bool was substituted for
‘_weak during type
inference

What does OCaml do?

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : '_weak1 list ref

x : bool list ref

Error: This expression has type bool
but an expression was expected
of type int

type error ...

One other example

let x = fun () -> ref [] in x : forall ’a. unit -> ‘a list ref

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

One other example

let x = fun () -> ref [] in

x () := [true];

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

x () : int list ref

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

x () : int list ref

List.hd raises an exception because it is applied to the empty list. why?

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

List.hd raises an exception because it is applied to the empty list. why?

creates one reference

creates a second totally
different reference

creates a new, different reference
every time it is called

TYPE INFERENCE:
THINGS TO REMEMBER

Type Inference: Things to remember
Declarative algorithm: Given a context G, and untyped term u:

– Find e, t, q such that G Ͱ u ==> e : t, q
• understand the constraints that need to be generated

– Find substitution S that acts as a solution to q via unification
• if no solution exists, there is no reconstruction

– Apply S to e, ie our solution is S(e)
• S(e) contains schematic type variables a,b,c, etc that may be

instantiated with any type

– Since S is principal, S(e) characterizes all reconstructions.

– If desired, use the type checking algorithm to validate

Type Inference: Things to remember
In order to introduce polymorphic quantifiers, remember:

– Quantifiers must be on the outside only
• this is called “prenex” quantification
• otherwise, type inference may become undecidable

– Quantifiers can only be introduced at let bindings:
• let x = v
• only the type variables that do not appear in the environment may

be generalized

– The expression on the right-hand side must be a value
• no references or exceptions

Efficient type inference
Didier Rémy discovered the type generalization algorithm based on levels
when working on his Ph.D. on type inference of records and variants. He
prototyped his record inference in the original Caml (long before OCaml).
He had to recompile Caml frequently, which took a long time. The type
inference of Caml was the bottleneck: “The heart of the compiler code
were two mutually recursive functions for compiling expressions and
patterns, a few hundred lines of code together, but taking around 20
minutes to type check! This file alone was taking an abnormal proportion
of the bootstrap cycle.”

“I implemented unification on graphs in O(n log n)---doing path compression and
postponing the occurs-check; I kept the sharing introduced in types all the way down
without breaking it during generalization/instantiation; and I introduced the rank-based type
generalization.”
This efficient type inference algorithm was described in Rémy's PhD dissertation (in French)
and in the 1992 technical report.

Type inference in Caml was slow for several reasons. Instantiation of a
type schema would create a new copy of the entire type -- even of the parts
without quantified variables, which can be shared instead. Doing the occurs
check on every unification of a free type variable (as in our eager toy
algorithm), and scanning the whole type environment on each
generalization increased the time complexity of inference.

Quoted from: Oleg Kiselyov, http://okmij.org/ftp/ML/generalization.html

http://okmij.org/ftp/ML/generalization.html

	Type Inference
	Last Time: ML Polymorphism
	Last Time
	Type Schemes
	Two Algorithms for Inferring Types
	Algorithm 1
	Example: Inferring types for map
	Step 1: Annotate
	Step 2: Generate Constraints
	Step 2: Generate Constraints
	Step 3: Solve Constraints
	Step 3: Solve Constraints
	Step 3: Solve Constraints
	Type Inference Details
	Constraint Generation
	Constraint Generation
	Constraint Generation
	Constraint Generation
	Operators
	If statements
	Function Application
	Function Declaration
	Function Declaration
	Summary: The type inference system
	Solving Constraints
	Solving Constraints
	Substitutions
	Substitutions
	Substitutions
	Substitutions
	Substitutions
	Substitutions
	Substitutions
	Substitutions
	Examples
	Examples
	Examples
	Examples
	Unification
	Unification
	Unification
	Unification
	Unification
	Unification
	Unification
	Unification
	Occurs Check
	Occurs Check
	Occurs Check
	Summary: Unification Engine
	The value of a classics degree
	Irreducible States
	Irreducible States
	type inference�More Details
	Generalization
	Generalization
	Let Polymorphism
	Let Polymorphism
	Unsound Generalization Example
	Unsound Generalization Example
	Unsound Generalization Example
	Unsound Generalization Example
	Unsound Generalization Example
	Unsound Generalization Example
	Unsound Generalization Example
	Unsound Generalization Example
	The Value Restriction
	Unsound Generalization Again
	Unsound Generalization Again
	Unsound Generalization Again
	What does OCaml do?
	What does OCaml do?
	What does OCaml do?
	One other example
	One other example
	One other example
	One other example
	One other example
	Type inference:�things to remember
	Type Inference: Things to remember
	Type Inference: Things to remember
	Efficient type inference

