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Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e = 
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e



Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e = 
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e

Notice that we require
a type annotation here.

We'll see why this is required
for our type checking algorithm later.



Language (Abstract) Syntax (BNF Definition)

t ::= int | bool | t -> t

b       -- ranges over booleans
n       -- ranges over integers

x        -- ranges over variable names
c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e = 
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e



Recall Inference Rule Notation
When defining how evaluation worked, we used this notation:

e1 -->* λx.e e2 -->* v2          e[v2/x] -->* v
e1 e2  -->* v

“if e1 evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then e1 applied to e2 evaluates to v”

In English:

And we were also able to translate each rule into 1 case of
a function in OCaml.  Together all the rules formed the basis
for an interpreter for the language.



The evaluation judgement
This notation:

was read in English as "e evaluates to v."  

It described a relation between two things – an expression e and 
a value v.  (And e was related to v whenever e evaluated to v.)

Note also that we usually thought of e on the left as "given" and
the v on the right as computed from e (according to the rules).

e -->* v



The typing judgement
This notation:

is read in English as "e has type t in context G."  It is going to
define how type checking works.  

It describes a relation between three things – a type checking 
context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to
compute t.  The typing rules are going to tell us how.

G Ͱ e : t



Typing Contexts

What is the type checking context  G?

Technically, I'm going to treat G as if it were a (partial) function 
that maps variable names to types.  Notation:

G(x) -- look up x's type in G
G,x:t -- extend G so that x maps to t

When G is empty, I'm just going to omit it.  So I'll sometimes just 
write:      Ͱ e : t



Example Typing Contexts
Here's an example context:

x:int, y:bool, z:int

Think of a context as a series of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool
and z has type int"

In the substitution model, if you assumed x has type int, that 
means that when you run the code, you had better actually wind 
up substituting an integer for x.



Typing Contexts and Free Variables
One more bit of intuition:

If an expression e contains free variables x, y, and z then we need 
to supply a context G that contains types for at least x, y and z.  If 
we don't, we won't be able to type-check e. 



Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

Goal: Give rules that define
the relation "G Ͱ e : t".

To do that, we are going to give
one rule for every sort of expression.

(We can turn each rule into
a case of a recursive function that
implements it pretty directly.)



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ b : bool

“boolean constants b always have type bool,
no matter what the context G is"

English:

Rule for constant booleans:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ n : int

“integer constants n always have type int,
no matter what the context G is"

English:

Rule for constant integers:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : t1      G Ͱ e2 : t2      optype(o) = (t1, t2, t3)
G Ͱ e1 o e2 : t3

“e1 o e2 has type t3, if e1 has type t1, e2 has type t2
and o is an operator that takes arguments of
type t1 and t2 and returns a value of type t3"

where

Rule for operators:

optype (+) = (int, int, int)
optype (-) = (int, int, int)
optype (<) = (int, int, bool)

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ x : G(x)

“variable x has the type given by the context"

Rule for variables:

English:

Note: this is rule explains (part) of why the
context needs to provide types for all of
the free variables in an expression

look up x in
context G



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : bool     G Ͱ e2 : t         G Ͱ e3 : t
G Ͱ if e1 then e2 else e3 : t

“if e1 has type bool
and e2 has type t
and e3 has (the same) type t
then e1 then e2 else e3 has type t "

Rule for if:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G,x:t Ͱ e : t2
G Ͱ λx:t.e : t -> t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for functions:

English:

Notice that to know 
how to extend the 
context G, we need 
the typing annotation 
on the function argument



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : t1 -> t2          G Ͱ e2 : t1
G Ͱ e1 e2 : t2

“if e1 has type t1->t2 and e2 has type t1
then e1 e2 has type t2 "

Rule for function call:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : t1          G,x:t1 Ͱ e2 : t2
G Ͱ let x = e1 in e2 : t2

“if e1 has type t1 
and G extended with x:t1 proves e2 has type t2
then let x = e1 in e2 has type t2 "

Rule for let:

English:



A Typing Derivation
A typing derivation is a "proof" that an expression is well-typed 
in a particular context. 

Such proofs consist of a tree of valid rules, with no obligations 
left unfulfilled at the top of the tree.

G, x:int Ͱ x : int G,x:int Ͱ 2 : int
G, x:int Ͱ x + 2 : int
G Ͱ λx:int. x + 2 : int -> int

notice that “int” is associated 
with x in the context



Key Properties
Good type systems are sound.
• ie, well-typed programs have "well-defined" evaluation

• ie, our interpreter should not raise an exception part-way 
through because it doesn't know how to continue evaluation

• colloquial phrase:  “sound type systems do not go wrong” 

Examples of OCaml expressions that go wrong:
• true + 3 (addition of booleans not defined)
• let (x,y) = 17 in ... (can’t extract fields of int)
• true (17) (can’t use a bool as if it is a function)

Sound type systems accurately predict run time behavior  
• if e : int and e terminates then e evaluates to an integer



Soundness = Progress + Preservation
Proving soundness boils down to two theorems:

Progress Theorem:
If Ͱ e : t then either:
(1) e is a value, or
(2) e --> e'

Preservation Theorem:
If Ͱ e : t and e --> e' then Ͱ e' : t

See COS 510 for proofs of these theorems.
But you have most of the necessary techniques:
Proof by induction on the structure of ... 
... various inductive data types. :-)



The typing rules also define an algorithm for 
... type checking ...

If you view G and e as inputs,
the rules for “G Ͱ e : t” tell you how to compute t



type t = IntT (* type int *)
| BoolT (* type bool *)
| ArrT of t * t                  (* type t -> t *)

type x = string   (* variables *)
type c = Int of int | Bool of bool (* integer and boolean constants *) 
type o = Plus | Minus | LessThan (* operators *)

type e = (* expressions *)
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * t * e (* t gives type of argument *)
| Call of e * e
| Let of x * e * e

Recall the OCaml Definition of Our Syntax



(* abstract type of contexts *)
type ctx

(* empty context *)
val empty : ctx

(* update ctx x t:  updates context ctx by binding variable x to type t *)
val update : ctx -> x -> t -> ctx

(* look ctx x: retrieves the type t associated with x in ctx
*                 raises NotFound if x does not appear in ctx *)

exception NotFound
val look : ctx -> x -> t

Signature for Context Operations



(* const c is the type of constant c *)
let const (c : c) : t =

match c with
| Int i -> IntT
| Bool b -> BoolT

(* op o = (t1, t2, t3) when o has type t1 -> t2 -> t3 *)
let op (o : o) : t  =

match o with
| Plus -> (IntT, IntT, IntT)
| ...

(* use err s to signal a type error with message s *)
exception TypeError of string
let err s =  raise (TypeError s)

Auxiliary Functions



(* type check expression e in ctx, producing t *)
let rec check (ctx : ctx) (e : e) : t =

match e with

| Const c -> const c

| Op (e1, o, e2) -> 
let (t1, t2, t) = op o in     (* op : t1 -> t2 -> t *)
let t1' = check ctx e1 in
let t2' = check ctx e2 in
if (t1 = t1') && (t2 = t2') then 

t
else 

err "bad argument to operator"

Simple Rules

optype(o) = (t1, t2, t3)
G Ͱ e1 : t1      
G Ͱ e2 : t2      

G Ͱ e1 o e2 : t3

const(c) = t     
G Ͱ c : t



(* type check expression e in ctx, producing t *)
let rec check (ctx : ctx) (e : e) : t =

match e with

| Var x -> 
begin

try look ctx x with 
NotFound -> err ("free variable: " ^ x)

end

Simple Rules

G Ͱ x : G(x)



(* type check expression e in ctx, producing t *)
let rec check (ctx : ctx) (e : e) : t =

match e with

| Fun (x,t,e) -> 
check (update ctx x t) e

Function Typing

G, x:t Ͱ e : t2
G Ͱ λx:t.e : t -> t2

Notice that if we did not have the type t as a 
typing annotation we would not be able to make 
progress in our type checker at this point.  We 
need to have a type for the variable x in our 
context in order to recursively check the 
expression e



(* type check expression e in ctx, producing t *)
let rec check (ctx : ctx) (e : e) : t =

match e with

| Call (e1, e2) ->
begin

let t1 = check ctx e1 in
match t1 with
| ArrT (targ, tresult) -> 

let t2 = check ctx e2 in
if targ = t2 then tresult
else  err "bad argument to function"

| _,_ -> err "not a function in call position"
end

Function Typing

G Ͱ e1 : targ -> tresult
G Ͱ e2 : targ

G Ͱ e1 e2 : tresult



(* type check expression e in ctx, producing t *)
let rec check (ctx : ctx) (e : e) : t =

match e with

| If (e1, e2, e3) -> ...

| Let (x, e1, e2) -> ...

Exercise:  Other Rules



TYPE INFERENCE

34



Robin Milner

For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet 
practical tool for machine assisted proof construction;

2. ML, the first language to include polymorphic type 
inference together with a type-safe exception-
handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full 
abstraction, the study of the relationship between 
operational and denotational semantics.

Robin Milner
Turing Award, 1991

We will be studying Hindley-Milner type inference.  Discovered by 
Hindley, rediscovered by Milner.   Formalized by Damas.  
Broken several times when effects were added to ML.



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

It’s very convenient we don’t have to annotate f and l with their 
types, as is required by our type checking algorithm.

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

ML finds this type for map:

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl

map : ('a -> 'b) -> 'a list -> 'b list 



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl

map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list 

which is really an abbreviation for this type:

map : ('a -> 'b) -> 'a list -> 'b list 

ML finds this type for map:



Language Design for Type Inference

We call this type the principal type (scheme) for map.

Any other ML-style type you can give map is an instance of this type, 
meaning we can obtain the other types via substitution of types for 
parameters from the principle type.

E.g.:

('a -> 'a) -> 'a list -> 'a list 

map : ('a -> 'b) -> 'a list -> 'b list 

(bool -> int) -> bool list -> int list 

('a -> int) -> 'a list -> int list 



Language Design for Type Inference
Principal types are great:
• the type inference engine can make a best choice for the type to 

give an expression
• the engine doesn't have to guess (and won't have to guess wrong)

The fact that principal types exist is surprisingly brittle.  If you change 
ML's type system a little bit in either direction, it can fall apart.



Language Design for Type Inference
Suppose we take out polymorphic types and need a type for id:

Then the compiler might guess that id has one (and only one) of 
these types:

id : bool -> bool

let id x = x

id : int -> int



Language Design for Type Inference
Suppose we take out polymorphic types and need a type for id:

Then the compiler might guess that id has one (and only one) of 
these types:

But later on, one of the following code snippets won't type check:

So whatever choice is made, a different one might have been better.

id true

id : bool -> bool

let id x = x

id : int -> int

id 3



Language Design for Type Inference
We showed that removing types from the language causes a failure 
of principal types.

Does adding more types always make type inference easier?



Language Design for Type Inference
We showed that removing types from the language causes a failure 
of principle types.

Does adding more types always make type inference easier?



Language Design for Type Inference
OCaml has universal types on the outside (“prenex quantification”):

It does not have types like this:

forall 'a,’b. (('a -> 'b) -> 'a list -> 'b list)

(forall 'a.'a -> int)-> int -> bool

argument type has its own polymorphic quantifier



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int

Does the following type work?

(‘a -> int) -> int * int



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. it’s argument can have type bool, AND
2. it’s argument can have type int

Does the following type work?

f:  (‘a -> int) -> int * int

NO:  this says g’s argument can be any type ‘a (it could be int or bool)

Consider g is (fun x -> x + 2) : int -> int.  
Unfortunately,  f g goes wrong when g applied to true inside f.



Language Design for Type Inference
Consider this program again:

We might want to give it this type:

Notice that the universal quantifier appears left of ->

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
System F is a lot like OCaml, except that it allows universal quantifiers 
in any position.  It could type check f.

Unfortunately, type inference in System F is undecidable.

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
System F is a lot like OCaml, except that it allows universal quantifiers 
in any position.  It could type check f.

Unfortunately, type inference in System F is undecideable.

Developed in 1972 by logician Jean Yves-Girard
who was interested in the consistency
of a logic of 2nd-order arithmetic.

Rediscovered as programming language
by John Reynolds in 1974.

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

let f x = x + x



Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

f : int -> int ? 

let f x = x + x

f : float -> float  ? 



Language Design for Type Inference
Even seemingly small changes can affect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

f : int -> int ? 

let f x = x + x

f : float -> float  ? 

f : 'a -> 'a  ? 



Language Design for Type Inference
Even seemingly small changes can affect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

No type in OCaml's type system works.  In Haskell:

f : int -> int ? 

let f x = x + x

f : float -> float  ? 

f : 'a -> 'a  ? 

f : Num 'a => 'a -> 'a  
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