Proving the Equivalence of Two
Modules

COS 326
Andrew Appel
Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Abstraction

module type SET =
sig
type ‘'a set
val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

end

* When explaining our modules to clients, we would like to explain
them in terms of abstract values

— sets, not the lists (or maybe trees) that implement them
* From a client’s perspective, operations act on abstract values

* Signature comments, specifications, preconditions and post-
conditions should be defined in terms of those abstract values

 How are these abstract values connected to the implementation?

[Abstraction

user’s view:

sets of integers
{1, 2, 3} {4, 5}

{}

implementation
view:

[1;1; 2; 3; 2; 3] [] [4, 5] [4, 5, 5]
[1; 2; 3] (5, 4]
lists of ’

integers

[Abstraction]

user’s view:

sets of integers

{1, 2, 3}

- there’s a
relationship
" here,

of course!

implementation
view:

we are

~ trying to
implement
the
abstraction

[1;1; 2; 3; 2; 3]

[] 14, 5]

[1; 2; 3]
lists of
integers

[Abstraction]

user’s view:

sets of integers

{1, 2, 3}
7 this
relationship
is a
function:

L it converts
concrete
values to
abstract
ones

|

function called
“the abstraction function”

implementation
view:

[1;1;2; 3; 2; 3] [] [4, 5]
[1; 2; 3]

lists of

integers

[Abstraction]

user’s view:
sets of integers
{1, 2, 3}
{}
S
abstraction
—
. . function
implementation
view: -
[1;1;2; 3; 2; 3] [] [4, 5])
1; 2; :

fists of L1 2; 3] inv(x): [5, 4]

ists o .

integers no duplicates A Representation

Invariant cuts down
the domain of the
abstraction function

[Specifications]

user’s view: a specification
—tells us what

add 3 operations on
{1, 2} > {1 2,3} abstract values

implementation
view:

[Specifications]

user’s view:

a specification

// tells us what
add 3 operations on
> {1,2,3} abstract values
do

implementation
view:

inv(x)

[Specifications]

user’s view:

a specification

// tells us what
add 3 operations on
> {1,2,3} abstract values
do
implementation
view:
> [3;1; 2]

inv(x)

[Specifications]

a specification
" tells us what

user’s view:

-
add 3 operations on
» {1,2,3} abstract values
'\ do

—— In general:

« related arguments
are mapped
implementation T to related
view: results

inv(x)

Specifications]

user’s view:

add 3
> {1,2,3} = {3;1}

Bug! Implementation

does not correspond

to the correct abstract
— value!

implementation

view:
> [3;1; 3]

inv(x)

[Specifications

specification

user’s view:

implementation
must correspond
no matter which
concrete value
you start with

implementation
view:

add 3

inv(x)

A more general view

abstract operation
with typet >t

abstraction function

™~

concrete operation
to prove:

for all c1:t, if inv(cl) then f abs (abs cl) ==abs (f concl)

abstract then apply the abstract op == apply concrete op then abstract

Another Viewpoint

A specification is really just another implementation (in this viewpoint)
— but it’s often simpler (“more abstract”)

We can use similar ideas to compare any two implementations of
the same signature. Just come up with a relation between
corresponding values of abstract type.

module M1:
relation relation
defining defining
corresponding corresponding
values values
M2.f E
module M2: > M2.v2

We ask: Do operations like f take related arguments to related results?

What is a specification?

It is really just another implementation
— but it’s often simpler (“more abstract”)
We can use similar ideas to compare any two implementations of

the same signature. Just come up with a relation between
corresponding values of abstract type.

relation defining
corresponding
alues

* Mlwvl

\I:/Il.f

M1.v2

One Signature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

Consider a client that might use the module:

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2 -1
end

let x1 = M1.bump (M1.bump (M1.zero)

let x2 = M2.bump (M2.bump (M2.zero)

What is the relationship?

is_related (x1, x2) =
x1 == x2/2-1

And it persists: Any sequence of operations produces related results from M1 and M2!

One Sighature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2 -1
end

Recall: A representation invariant is a property that holds for all values of abs. type:

Inter-module relations are a lot like representation invariants!

if M.v has abstract type t,

 we want inv(M.v) to be true

if M1.vand M2.v have abstract type t,
« we wantis_related(M1.v, M2.v) to be true

It’s just

a relation
between
two modules
instead of
one

[Relations may imply the Rep Inv

When defining our relation, we will often do so in a way that
implies the representation invariant.

ie: avalue in M1 will not be related to any value in M2 unless it

satisfies the representation invariant. ,

°vl'

* Ml.vl

\\‘/Il.f

M1.v2

One Sighature, Two Implementations

module type S = module M1:S = module M2 :S =
Sig struct struct
typet type t =int type t =int
val zero : t let zero=0 let zero =2
val bump :t->t let bumpn=n+1 let bumpn=n+2
val reveal : t -> int let reveal n =n let revealn=n/2-1
end end end

is_related (x1, x2) =
(x1 == x2/2-1) && x1 >=0 && even x2

is_related (x1, x2) implies x1 >=0 \/\ rep inv for M1
is_related (x1, x2) implies even x2 && x2 > 0\/\
ep inv for M2

One Sighature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

But For Now:

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2 -1
end

is_related (x1, x2) =
(x1 == x2/2-1)

One Signature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2 -1
end

Consider zero, which has abstract type t.

Must prove: is_related (M1.zero, M2.zero)

Equvalent to proving: M1.zero == M2.zero/2 -1

Proof:
M1.zero

==2/2-1
== M2.zero/2 -1

(substitution)
(math)
(substitution)

is_related (x1, x2) =
x1 == x2/2-1

One Signature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

Consider bump, which has abstract type t -> t.

Must prove for all v1:int, v2:int
if is_related(vl,v2) thenis_related (M1.bump vl, M2.bump v2)

Proof:

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2 -1
end

is_related (x1, x2) =
x1 == x2/2-1

(M2.bump v2)/2 -1

(1) Assume is_related(v1, v2).

(2) vl ==v2/2 -1 (by def) ==(v2+2)/2-1 (eval)
==(v2/2-1)+1 (math)

Next, prove: ==vl+1 (by 2)

(M2.bump v2)/2 -1 == M1.bump v1 == M1l.bump vl (eval, reverse)

One Signature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

Consider reveal, which has abstract type t -> int.

Must prove for all v1:int, v2:int

if is_related(vl,v2) then M1.reveal vl == M2.reveal v2

Proof:

(1) Assume is_related(v1, v2).
(2) vl ==v2/2 -1 (by def)

Next, prove:

M2.reveal v2 == M1.reveal v1

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2 -1
end

M?2.reveal v2

== M1.reveal v1

is_related (x1, x2) =
x1 == x2/2-1

(eval)

(by 2)
(eval, reverse)

[Summary of Proof Technique

To prove M1 == M2 relative to signature S,

— Start by defining a relation “is_related”:

* is_related (v1, v2) should hold for values with abstract type t when v1
comes from module M1 and v2 comes from module M2

— Extend “is_related” to types other than just abstract t. For example:
e if vl, v2 have type int, then they must be exactly the same
— ie, we must prove: vl ==v2
e if vl, v2 have type sl ->s2 then we consider argl, arg2 such that:
— if is_related(argl, arg2) at type s1 then we prove
— is_related(v1 argl, v2 arg2) at type s2
e if vl, v2 have type s option then we must prove:
— v1 == None and v2 == None, or
— vl ==Some ul and v2 == Some u2 and is_related(ul, u2) at type s

— Foreachvalv:sin§, prove is_related(M1.v, M2.v) at type s

MODULES WITH DIFFERENT
IMPLEMENTATION TYPES

One Sighature, Two Implementations

module type S =
Sig
type t
val zero : t
val bump :t->t
val reveal : t -> int
end

module M1 :S =
struct
type t =int
let zero=0
let bumpn=n+1
let reveal n =n
end

module M2 : S =
struct
type t =int
let zero =2
let bumpn=n+2
let revealn=n/2-1
end

Different representation types

module M2 :S =
struct
module type S = module M1 :S =
. vB typet=Zero | Soft
SIg struct
b S - let zero = Zero
P P let bump x =S x
val zero : t let zero=0
let rec reveal x =
val bump :t->t let bumpx=x+1)
] match x with
val reveal : t -> int let reveal x = x
| Zero->0
end end
| Sx->1+reveal x
end

[The Same Principle Applies!

Two modules with abstract type t will be declared equivalent if:
* one can define a relation between corresponding values of type t
* one can show that the relation is preserved by all operations

If we do indeed show the relation is “preserved” by operations of the
module (an idea that depends crucially on the signature of the
module) then no client will ever be able to tell the difference between
the two modules even though their data structures are implemented
by completely different types!

Different Representation Types

module type S =

sig

type t
val zero : t

val bump : t->t
val reveal : t -> int
end

module M1 :S =
struct
typet =int
let zero=0
let bumpx=x+1
let reveal x = x
end

module M2 : S =
struct
typet=Zero | Soft
let zero = Zero
let bump x =S x
let rec reveal x =
match x with
| Zero->0
| Sx->1+reveal x
end

is_related (x1, x2) =
x1 == M2.reveal x2

Module Abstraction

John Reynolds, 1935-2013
Discovered the polymorphic lambda calculus (first polymorphic type system).
Developed Relational Parametricity: A technique for proving the equivalence of modules.

Summary: Abstraction and Equivalence

Abstraction functions define the relationship between a concrete
implementation and the abstract view of the client

— We should prove concrete operations implement abstract ones
described to our customers/clients

We prove any two modules are equivalent by
— Defining a relation between values of the modules with abstract type

— We get to assume the relation holds on inputs; prove it on outputs

Rep invariants and “is_related” predicates are called logical relations

Software Verification
(preview of COS 510 “Programming Languages”)

Andrew W. Appel

\g Princeton
51 %Y > University
bE] J?_\—@;B‘ IGET)

Formal reasoning
about programs

33

Formal reasoning
about programs and programming languages

Which of these things do we do

ejo/0fe (0o bae 04 - 10 a)e s]n 1 ’
oo O¢ Dl RS ' 4

We can do all of these

v U VILER SO OITOIUC 5-'—97 'l
oo 4 o RS f ;

- By e . - o -

COS 510: Machine-checked, formal reasoning
about programs and programming languages

Imperative
Functional Programming
Programming
Hoare
Logic
Proving your

Proving
(functional)

Hoare Logic
programs correct sound

intro to
Formal

Logic

Specification
of programming
languages

Proving
your type
system sound

Proving your
(imperative)
programs correct

37

EXAMPLE: LENGTH, APP

b Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end|

Eval compute in length (1::2::3::4:mnil).

Fixpoint app {A} (xs ys: list A) : list A =
match xs with

| nil == ys
| x:xs' == x : app xs' ys
end.

Eval compute in app (1:2::3:nil) (7::8:mnil).

Eval compute in length (app (1::2::3:nil) (7:8:nil)).

Ready

Queries

Tools

Compile Windows Help
Messages -~ Errors
Line: 7 Char: 6

A

Jobs

39

b Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list A) : list A =
match xs with

| nil == ys
| x:xs' == x : app xs' ys
end.

Eval compute in app (1:2::3:nil) (7::8:mnil).

Eval compute in length (app (1::2::3:nil) (7:8:nil)).

Ready

Queries

Tools

Compile Windows Help

Messages -~

Errors

s nat

Line:

g Char: 42

A

Jobs

40

b Coglde —
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list &) : list A :=

match xs with

| nil == ys Messages 7 Errors | 2 Jobs
| x:xs' == x :: app xs' ys
end.

Eval compute in app (1:2::3:nil) (7::8:mnil).

Eval compute in length (app (1::2::3:nil) (7:8:nil)).

Ready Line: 17 Char: 1

b Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list &) : list A :=

match xs with

| nil == ys
| x:xs' == x :: app xs' ys
end.

Queries

Eval compute in app (1::2::3:nil) (7::8:nil)

Eval compute in length (app (1::2::3:nil) (7:8:nil)).

Ready

Tools

Compile Windows Help

Messages -~ Errors

=1:2:3:7:8:nil
- list nat

Line: 18 Char: 48

A

Jobs

42

b Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list &) : list A :=

match xs with|

| nil == ys
| x:xs' == x :: app xs' ys
end.

Eval compute in app (1:2::3:nil) (7::8:mnil).

Eval compute in length (app (1::2::3:nil) (7::8:nil)).

Ready

Queries

Tools

Compile Windows Help

Messages

A Errors

s nat

Line:

13 Char: 15

A

Jobs

43

% Coglde

File Edit View MNavigation Templates Queries Tools Compile Windows Help

dlec.v

Theorem app_length: forall {a} (xs ys: list A),
length (app xs ys) = length xs + length ys.

Proof.

Qed.

Messages -~ Errors .~ Jobs | -~

Ready Line: 52 cChar: 1

b Coglde

— >

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v

1 subgoal

Theorem app_length: forall {A} (s ys: list &), (1/1)

length (app xs ys) = length xs + length ys. forall (A : Type) (xs ys : list &),
Proof) length (app xs ys) = length xs + length ys
Qed.

Messages -~ Errors Jobs

Ready, proving app_length Line: 36 Char: 7 o/0

45

b Coglde

File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),

length (app xs ys) = length xs + length ys.
Proof.
intros.

|
Qed.

Ready, proving app_length

Tools Compile Windows Help

1 subgoal

A:Type

xs,ys: listA

(1/1)
length (app xs ys) = length xs + length ys

Messages 2 Errors 2 Jobs

Line: 38 Char: 1

46

b Coglde -
File Edit View Navigation Templates Queries Tools Compile Windows Help
dlec.v
2 subgoals
A:Type
Theorem app_length: forall {a} (xs ys: list &), ys:list A
length (app xs ys) = length xs + length ys. (1/2)
Proof. length (app nil ys) = length nil + length ys
intros. (2/2)
induction x5| length (app (a :: xs) ys) =
- (* base case *) length (a :: xs) + length ys
simpl.
reflexivity.
- (* inductive case *)
simpl.
reflexivity.
QEd. MESSHQES s Errors s Jl:lh'Er
Ready, proving app_length Line: 38 Char: 14

47

b Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
= (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl.
reflexivity.

Qed.

Ready, proving app_length

Tools Compile Windows Help

1 subgoal

A:Type

ys:list A

(1/1)
length (app nil ys) = length nil + length ys

Messages 2 Errors 2 Jobs

Line: 44 Char 14

48

b Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- * inductive case * |
simpl.
reflexivity.

Qed.

Ready, proving app_length

Tools Compil

1 subgoal
A:Type
ys:list A

e

Windows Help

length ys = length ys

Messages

A Errors

Line:

42 Char: 23

A

(1/1)

Jobs

49

b Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
= (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl.
reflexivity.

Qed.

Ready, proving app_length

Tools Compile Windows Help

1 subgoal

A:Type

ys:list A

(1/1)
length (app nil ys) = length nil + length ys

Messages 2 Errors 2 Jobs

Line: 44 Char 14

50

b Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- * inductive case * |
simpl.
reflexivity.

Qed.

Ready, proving app_length

Tools Compil

1 subgoal
A:Type
ys:list A

e

Windows Help

length ys = length ys

Messages

A Errors

Line:

42 Char: 23

A

(1/1)

Jobs

51

b Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity|
- (* inductive case *)
simpl.
reflexivity.

Qed.

Ready, proving app_length

Tools Compile Windows Help

This subproof is complete, but there are some
unfocused goals:

(1/1)
length (app (a :: xs) ys) =
length (a :: xs) + length ys
Messages -~ Errors Jobs

Line: 41 Char: 15

52

b Coglde

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
1 subgoal
A:Type
Theorem app_length: forall {a} (xs ys: list &), a:A
length (app xs ys) = length xs + length ys. xs, ys: list A

Proof. IHxs : length (app xs ys) =

intros. length xs + length ys

induction xs.

- (* base case *) length (app (a :: xs) ys) =
simpl. length (a :: xs) + length ys
reflexivity.

= [* inductive case *
simpl.
reflexivity.

Qed. Messages -~ Errors .~
Ready, proving app_length Line: 42 Char: 23

(1/1)

Jobs

53

b Coglde

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
1 subgoal
A:Type
Theorem app_length: forall {a} (xs ys: list &), a:A
length (app xs ys) = length xs + length ys. xs, ys: list A

Proof. IHxs : length (app xs ys) =

intros. length xs + length ys

induction xs.

- (* base case *) S (length (app xs ys)) =
simpl. s length xs + length ys
reflexivity.

- (* inductive case *)
simpl|

reflexivity.

Qed. Messages -~ Errors .~
Ready, proving app_length Line: 43 Char: 8

(1/1)

Jobs

54

b Coglde

File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl|
reflexivity.
Qed.

Ready, proving app_length

Tools Compile Windows Help

1 subgoal
A:Type
a:A
xs, ys: list A
IHxs : length (app xs ys) =
length xs + length ys
(1/1)
S (length (app xs ys)) =
s length xs + length ys
Messages -~ Errors Jobs

In environment
A:Type
a:A
xs, ys: list A
IHxs : length (app xs ys) =
length xs + length ys
Unable to unify "S (length xs + length ys)"
with "s (length (app xs ys))".

Line: 43 Char: 8

55

b Coglde

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
1 subgoal
A:Type
Theorem app_length: forall {a} (xs ys: list &), a:A
length (app xs ys) = length xs + length ys. xs, ys: list A

Proof. IHxs : length (app xs ys) =

intros. length xs + length ys

induction xs.

- (* base case *) S (length xs + length ys) =
simpl. s length xs + length ys
reflexivity.

- (* inductive case *)
simpl.

rewrite IHxs.

reﬂexivity.| Messages Errors -~

Qed.

Ready, proving app_length Line: 45 Char: 14

(1/1)

Jobs

56

b Coglde
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v

No more subgoals.

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl.
rewrite IHXs.
reﬂexivity. Messages -~ Errors o~ Jobs

Qed.

Ready, proving app_length Line: 47 Char: 1

b Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity|
- (* inductive case *)
simpl.
rewrite IHXs.
reflexivity.

Qed.

Ready

Tools

Compile Windows Help

Messages

A Errors

Line:

41 Char: 15

A

Jobs

58

b Coglde

File Edit View MNavigation Templates Queries

dlec.v

Theorem app_assoc: forall {A} (xs ys zs: list &),
app xs (app ys zs) = app (app xs ys) zs.
Proof.

intros.

induction xs.

- (* base case *)

simpl.

reflexivity.

- (* inductive case *)

simpl.

rewrite THxs.

reflexivity.

Qed.

Ready, proving app_assoc

Tools Compile Windows Help
1 subgoal
(1/1)
forall (A : Type) (xs ys zs : list A),
app xs (app ys zs) = app (app xs ys) zs
Messages -~ Errors |~ Jobs
Line: 64 Char: 1

59

b Coglde
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v

Theorem app_assoc: forall {A} (xs ys zs: list &),
app xs (app ys zs) = app (app xs ys) zs.

Proof.

intros.

induction xs.

- (* base case *)
simpl.
reflexivity.

- (* inductive case *)

simpl.

rewrite IHxs.

reflexivity.

Qed. Messages -~ Errors -~ Jobs

Ready Line: 82 cChar: 1

Applications of Formal Methods

Attacking a web server

URLs

for (i=0;p[i];1i++)
search[i]=p[i)

Input 1n web forms

Crypto keys for SSL ©

O
etc. []
==l X
: Web Server
Client PC
€ = C ff [www.csprincetonedu o =

COMPUTER SCIENCE (this is a really long §dafehiferm that overflows a buffer
Spothght O i X ' o

[nternet Voting? Really? ®:
éjy Andrew W Appel

E—"] (ml

independendly oigar

Professor Appel's TEDx Talk on Internet Voting 62

Attacking a web browser

HTML keywords

for (i=0;p[i];i++)
gif[i]=pl[1i];

Image names © %PD

0 [
URLs]
a [T
etc. _ Web Server
Client PC @ badguy.com

€ 3CH www.badguy.com 7w @

Images

Earn $$$ Thousands
working at home!

Attacking everything in sight

%uu

Client device The Internet
@ badguy.com

E-mail client

PDF viewer

Web browser
Operating-system kernel
TCP/IP stack

Any application that ever sees input directly from the outside
64

Solution: implement the outward-facing parts of
software without any bugs!

%uu

Client device The Internet
@ badguy.com

E-mail client

PDF viewer

Web browser
Operating-system kernel
TCP/IP stack

Any application that ever sees input directly from the outside
65

In recent years, great progressin . ..

Proved-correct optimizing C compiler (France)
Proved-correct ML compiler (Sweden, Princeton)
Proved-correct O.S. kernels (Australia, New Haven)
Proved-correct crypto (Princeton NJ, Cambridge MA)
Proved-correct distributed systems (Seattle, Israel)
Proved-correct web server (Philadelphia)

Proved-correct malloc/free library (Princeton, Hoboken)

66

Automated verification in industry

Amazon

Microsoft

Intel

Facebook

Google

Galois, HRL, Rockwell, Bedrock, ...

67

Recent Princeton JIW / Sr. Thesis

Katherine Ye ’16 verified crypto security
Naphat Sanguansin ’16 verified crypto impl’'n
Brian McSwiggen '18 verified B-trees

Katja Vassilev ’19 verified dead-var elimination
John Li’19 verified uncurrying

Jake Waksbaum ’20 verified Burrows-Wheeler
Anvay Grover ’20 verified CPS-conversion

ACM Conference on Computer and Communications Security 2017

Verified Correctness and Security of mbedTLS HMAC-DRBG

Katherine Q. Ye 16 Matthew Green Naphat Sanguansin’16
Princeton U., Carnegie Mellon U. Johns Hopkins University Princeton University
Lennart Beringer Adam Petcher Andrew W. Appel “81
Princeton University Oracle Princeton University
ABSTRACT

We have formalized the functional specification of HMAC-DRBG
(NIST 800-90A), and we have proved its cryptographic security—
that its output is pseudorandom—using a hybrid game-based proof.
We have also proved that the mbedTLS implementation (C program)
correctly implements this functional specification. That proof com-
poses with an existing C compiler correctness proof to guarantee,
end-to-end, that the machine language program gives strong pseu-
dorandomness. All proofs (hybrid games, C program verification,
compiler, and their composition) are machine-checked in the Coq
proof assistant. Our proofs are modular: the hybrid game proof
holds on any implementation of HMAC-DRBG that satisfies our
functional specification. Therefore, our functional specification can
serve as a high-assurance reference.

Prerequisites for COS 510

if you’re an undergrad

1. COS 326 Functional Programming

2. Enjoy the proofs in COS 326

	Proving the Equivalence of Two Modules
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Specifications
	Specifications
	Specifications
	Specifications
	Specifications
	Specifications
	A more general view
	Another Viewpoint
	What is a specification?
	One Signature, Two Implementations
	One Signature, Two Implementations
	Relations may imply the Rep Inv
	One Signature, Two Implementations
	One Signature, Two Implementations
	One Signature, Two Implementations
	One Signature, Two Implementations
	One Signature, Two Implementations
	Summary of Proof Technique
	Modules with different implementation types
	One Signature, Two Implementations
	Different representation types
	The Same Principle Applies!
	Different Representation Types
	Module Abstraction
	Summary: Abstraction and Equivalence
	Software Verification�(preview of COS 510 “Programming Languages”)
	Formal reasoning�about programs and programming languages
	Formal reasoning�about programs and programming languages
	Which of these things do we do�By machine? With pencil+paper?
	We can do all of these� By machine! pencil+paper? Really?
	COS 510: Machine-checked, formal reasoning�about programs and programming languages
	Example: length, app
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Applications of Formal Methods
	Attacking a web server
	Attacking a web browser
	Attacking everything in sight
	Solution: implement the outward-facing parts of software without any bugs!
	In recent years, great progress in . . .
	Automated verification in industry
	Recent Princeton JIW / Sr. Thesis
	Slide Number 69
	Prerequisites for COS 510 �if you’re an undergrad

