
Modules
and Representation Invariants

COS 326
Andrew Appel

Princeton University

slides copyright 2018 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Efficient Data Structures
In COS 226, you learned about all kinds of clever data structures:
• red-black trees
• union-find sets
• tries, ...

Not just any tree is a red-black tree. In order to be a red-black
tree, you need to obey several invariants:
• eg: keys are in order in the tree

Operations such as look-up, depend upon those invariants to be
correct. All inputs to look-up must satisfy the in-order invariant.

Efficient Data Structures
Operations such as look-up, depend upon those invariants to be
correct. All inputs to look-up must satisfy the in-order invariant.

Key Question: How do you arrange for that to happen when
client code is using your interface & calling your functions?

Answer: Use abstract types & representation invariants.

REPRESENTATION INVARIANTS

A Signature for Sets

5

module type SET =
sig
type ‘a set

val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

val add : ‘a -> ‘a set -> ‘a set

val rem : ‘a -> ‘a set -> ‘a set

val size : ‘a set -> int

val union : ‘a set -> ‘a set -> ‘a set

val inter : 'a set -> ‘a set -> 'a set

end

Sets as Lists without Duplicates

7

module Set2 : SET =
struct
type ‘a set = ‘a list

let empty = []
let mem = List.mem

(* add: check if already a member *)

let add x l = if mem x l then l else x::l

let rem x l = List.filter ((<>) x) l

(* size: list length is number of unique elements *)
let size l = List.length l

(* union: discard duplicates *)

let union l1 l2 = List.fold_left
(fun a x -> if mem x l2 then a else x::a) l2 l1

let inter l1 l2 = List.filter (fun h -> mem h l2) l1

end

Back to Sets
The interesting operation:

Why does this work? It depends on an invariant:

All lists supplied as an argument contain no duplicates.

A representation invariant is a property that holds of all values of
a particular (abstract) type.

(* size: list length is number of unique elements *)
let size (l:’a set) : int = List.length l

Implementing Representation Invariants

For lists with no duplicates:

(* checks that a list has no duplicates *)
let rec inv (s : 'a set) : bool =

match s with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

let rec check (s : ‘a set) (m:string) : ‘a set =
if inv s then
s

else
failwith m

Debugging with Representation Invariants

(* size: list length is number of unique elements *)
let size (s:’a set) : int =
ignore (check s “size: bad set input”);
List.length s

As a precondition on input sets:

Debugging with Representation Invariants

(* size: list length is number of unique elements *)
let size (s:’a set) : int =
ignore (check s “size: bad set input”);
List.length s

As a precondition on input sets:

(* add x to set s *)
let add x s =
let s = if mem x s then s else x::s in
check s “add: bad set output”

As a postcondition on output sets:

A Signature for Sets

12

module type SET =
sig
type ‘a set

val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

val add : ‘a -> ‘a set -> ‘a set

val rem : ‘a -> ‘a set -> ‘a set

val size : ‘a set -> int

val union : ‘a set -> ‘a set -> ‘a set

val inter : 'a set -> ‘a set -> 'a set

end

Suppose we check all the red values satisfy our invariant leaving the module,
do we have to check the blue values entering the module satisfy our invariant?

Representation Invariants Pictorially

Client Code Abstract Set Data Type

empty

add

[1;2]
type t

[]

type t
[1;2]

type t
[1]

size

[1;1;1]
type int list

check

check

assume

When debugging, we can check our invariant each time we construct a value
of abstract type. We then get to assume the invariant on input to the module.

Representation Invariants Pictorially

Client Code Abstract Set Data Type

empty

add

[1;2]
type t

[]

type t
[1;2]

type t
[1]

size

[1;1;1]
type int list

check

check

assume

When proving, we prove our invariant holds each time we construct a value
of abstract type and release it to the client. We get to assume the invariant
holds on input to the module.

Such a proof technique is highly modular: Independent of the client!

Repeating myself

You may

assume the invariant inv(i) for module inputs i with abstract type

provided you

prove the invariant inv(o) for all module outputs o with abstract type

Design with Representation Invariants
A key to writing correct code is understanding your own
invariants very precisely

Try to write down key representation invariants
– if you write them down then you can be sure you know what

they are yourself!
– you may find as you write them down that they were a little

fuzzier than you had thought
– easier to check, even informally, that each function and value

you write satisfies the invariants once you have written them
– great documentation for others
– great debugging tool if you implement your invariant
– you’ll need them to prove to yourself that your code is correct

PROVING THE REP INVARIANT
FOR THE SET ADT

Representation Invariants

Representation Invariant for sets without duplicates:

Definition of empty:

let empty : ‘a set = []

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

inv (empty)

== inv []

== match [] with [] -> true | hd::tail -> ...

== true

inv (empty) == true

Proof Obligation:

Proof:

Representation Invariants

Representation Invariant for sets without duplicates:

Checking add:

Proof obligation:
for all x:’a and for all l:’a set,
if inv(l) then inv (add x l)

let add (x:'a) (l:'a set) : 'a set =

if mem x l then l else x::l

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

assume invariant on input
prove invariant on output

Aside: Universal Theorems

Lots of theorems (like the one we just saw) have the form:

forall x:t. P(x)

To prove such theorems, we often pick an arbitrary
representative r of the type t and then prove P(r) is true.

(Often times we just use “x” as the name of the representative.
This just helps prevent a proliferation of names.)

If we can’t do the proof by picking an arbitrary representative,
we may want to split values of type t into cases or use induction.

Aside: Conditional Theorems

Lots of theorems (also like the one we just saw) have the form:

if P(x) then Q(y)

To prove such theorems, we typically assume P(x) is true and
then under that assumption, prove Q(y) is true.

Aside: Conditional Theorems

Lots of theorems (also like the one we just saw) have the form:

if P(x) then Q(y)

To prove such theorems, we typically assume P(x) is true and
then under that assumption, prove Q(y) is true.

Such conditionals are actually logical implications:

P(x) ==> Q(y)

Aside: Conditional Theorems

Putting ideas together, proving:

for all x:t,y:t’, if P(x) then Q(y)

will involve:
(1) picking arbitrary x:t, y:t’
(2) assuming P(x) is true and then using that assumption to
(3) prove Q(y) is true.

Representation Invariants

Theorem: for all x:’a and for all l:’a set, if inv(l) then inv (add x l)
Proof:

(1) pick an arbitrary x and l. (2) assume inv(l).
Break into two cases:

-- one case when mem x l is true
-- one case where mem x l is false

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

let add (x:'a) (l:'a set) : 'a set =

if mem x l then l else x::l

Representation Invariants

Theorem: for all x:’a and for all l:’a set, if inv(l) then inv (add x l)
Proof:

(1) pick an arbitrary x and l. (2) assume inv(l).

case 1: assume (3): mem x l == true:

inv (add x l)
== inv (if mem x l then l else x::l) (eval)
== inv (l) (by (3), eval)
== true (by (2))

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

let add (x:'a) (l:'a set) : 'a set =

if mem x l then l else x::l

Representation Invariants

Theorem: for all x:’a and for all l:’a set, if inv(l) then inv (add x l)
Proof:

(1) pick an arbitrary x and l. (2) assume inv(l).

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

let add (x:'a) (l:'a set) : 'a set =

if mem x l then l else x::l

case 2: assume (3) not (mem x l) == true:

inv (add x l)
== inv (if mem x l then l else x::l) (eval)
== inv (x::l) (by (3))
== not (mem x l) && inv (l) (by eval)
== true && inv(l) (by (3))
== true && true (by (2))
== true (eval)

Representation Invariants

Representation Invariant for sets without duplicates:

Checking rem:

Proof obligation?
for all x:’a and for all l:’a set,
if inv(l) then inv (rem x l)

let rem (x:'a) (l:'a set) : 'a set =

List.filter ((<>) x) l

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

assume invariant on input
prove invariant on output

Representation Invariants

Representation Invariant for sets without duplicates:

Checking size:

Proof obligation?
no obligation – does not produce value with type ‘a set

let size (l:'a set) : int =

List.length l

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

Representation Invariants

Representation Invariant for sets without duplicates:

Checking union:

Proof obligation?
for all l1:’a set and for all l2:’a set,
if inv(l1) and inv(l2) then inv (union l1 l2)

let union (l1:'a set) (l2:'a set) : 'a set =
...

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

assume invariant on input prove invariant on output

Representation Invariants

Representation Invariant for sets without duplicates:

Checking inter:

Proof obligation?
for all l1:’a set and for all l2:’a set,
if inv(l1) and inv(l2) then inv (inter l1 l2)

let inter (l1:'a set) (l2:'a set) : 'a set =
...

let rec inv (l : 'a set) : bool =
match l with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

assume invariant on input prove invariant on output

Representation Invariants: a Few Types
Given a module with abstract type t
Define an invariant Inv(x)
Assume arguments to functions satisfy Inv
Prove results from functions satisfy Inv

sig
type t

val value : t

val constructor : int -> t

val transform : int -> t -> t

val destructor : t -> int

end

prove: Inv (value)

prove: for all x:int, Inv (constructor x)

prove:
for all x:int,
for all v:t,
if Inv(v)
then Inv (transform x v)

assume Inv(t))

REPRESENTATION INVARIANTS
FOR HIGHER TYPES

Representation Invariants: More Types
What about more complex types?

Basic concept:
• Assume arguments are “valid” and prove results “valid”
• What it means to be “valid” depends on the type of the value

eg: for abstract type t, consider: val op : t * t -> t option

Representation Invariants: More Types
What about more complex types?

Basic concept:
• Assume arguments are “valid” and prove results “valid”
• What it means to be “valid” depends on the type of the value
• We are going to decide whether “x is valid for type s”

eg: for abstract type t, consider: val op : t * t -> t option

“valid for type t”
What about more complex types?

We know what it means to be a valid value v for abstract type t:
• Inv(v) must be true

What is a valid pair? v is valid for type s1 * s2 if
• (1) fst v is valid for type s1, and
• (2) snd v is valid for type s2

Equivalently: (v1, v2) is valid for type s1 * s2 if
• (1) v1 is valid for type s1, and
• (2) v2 is valid for type s2

eg: for abstract type t, consider: val op : t * t -> t option

Representation Invariants: More Types

What is a valid pair? v is valid for type s1 * s2 if
(1) fst v is valid for s1, and
(2) snd v is valid for s2

eg: for abstract type t, consider: val op : t * t -> t

must prove to establish rep invariant:
for all x : t * t,

if Inv(fst x) and Inv(snd x) then
Inv (op x)

must prove to establish rep invariant:
for all x1:t, x2:t

if Inv(x1) and Inv(x2) then
Inv (op (x1, x2))

Equivalent
Alternative:

Representation Invariants: More Types

What is a valid option? v is valid for type s1 option if
(1) v is None, or
(2) v is Some u, and u is valid for type s1

eg: for abstract type t, consider: val op : t * t -> t option

must prove to satisfy rep invariant:
for all x : t * t,

if Inv(fst x) and Inv(snd x)
then

either:
(1) op x is None or
(2) op x is Some u and Inv u

Representation Invariants: More Types

Suppose we are defining an abstract type t.
Consider happens when the type int shows up in a signature.
The type int does not involve the abstract type t at all, in any way.

When is a value v of type int valid?

eg: in our set module, consider: val size : t -> int

all values v of type int are valid

val size : t -> int

val const : int

val create : int -> t

must prove nothing

must prove nothing

for all v:int,
assume nothing about v,
must prove Inv (create v)

Representation Invariants: More Types

What is a valid function? Value f is valid for type t1 -> t2 if
• for all inputs arg that are valid for type t1,
• it is the case that f arg is valid for type t2

Note: We’ve been using this idea all along for all operations!

eg: for abstract type t, consider: val op : t * t -> t option

must prove to satisfy rep invariant:
for all x : t * t,

if Inv(fst x) and Inv(fst x)
then

either:
(1) op x == None or
(2) op x == Some u and Inv u

valid for type t * t
(the argument)

valid for type t option
(the result)

Representation Invariants: More Types

What is a valid function? Value f is valid for type t1 -> t2 if
• for all inputs arg that are valid for type t1,
• it is the case that f arg is valid for type t2

eg: for abstract type t, consider: val op : (t -> t) -> t

must prove to satisfy rep invariant:
for all x : t -> t,

if
{for all arguments arg:t,

if Inv(arg) then Inv(x arg) }
then

Inv (op x)

valid for type t -> t
(the argument)

valid for type t
(the result)

Representation Invariants: More Types
sig
type t
val create : int -> t
val incr : t -> t
val apply : t * (t -> t) -> t
val check_t : t -> t

end

struct
type t = int
let create n = abs n
let incr n = if n<maxint then n + 1

else raise Overflow
let apply (x, f) = f x
let check_t x = assert (x >= 0); x

end
representation invariant:
let inv x = x >= 0

function apply, must prove:
for all x:t,
for all f:t -> t

if x valid for t
and f valid for t -> t
then f x valid for t

function apply, must prove:
for all x:t,
for all f:t -> t

if (1) inv(x)
and (2) for all y:t, if inv(y) then inv(f y)
then inv(f x)

Proof: By (1) and (2), inv(f x)

ANOTHER EXAMPLE

Natural Numbers

module type NAT =
sig

type t

val from_int : int -> t

val to_int : t -> int

val map : (t -> t) -> t -> t list

end

Natural Numbers

module type NAT =
sig

type t

val from_int : int -> t

val to_int : t -> int

val map : (t -> t) -> t -> t list

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let to_int (n:t) : int = n

let rec map f n =
if n = 0 then []
else f n :: map f (n-1)

end

Natural Numbers

module type NAT =
sig

type t

val from_int : int -> t

val to_int : t -> int

val map : (t -> t) -> t -> t list

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let to_int (n:t) : int = n

let rec map f n =
if n = 0 then []
else f n :: map f (n-1)

end
let inv n : bool =
n >= 0

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let to_int (n:t) : int = n

let rec map f n =
if n = 0 then []
else f n :: map f (n-1)

end

Look to the signature to figure out what to verify

module type NAT =
sig

type t

val from_int : int -> t

val to_int : t -> int

val map : (t -> t) -> t -> t list

end

let inv n : bool =
n >= 0

since function result has
type t, must prove the
output satisfies inv()

can assume inv(x) for all
inputs; don't need to

prove
anything of the outputs

with type int

for map f x, assume:
(1) inv(x), and

(2) f’s results satisfy inv() when it’s
inputs satisfy inv().

then prove that all elements of the
output list satisfy inv()

Verifying The Invariant
In general, we use a type-directed proof methodology:
• Let t be the abstract type and inv() the representation invariant
• For each value v with type s in the signature, we must check that

v is valid for type s as follows:
– v is valid for t if

• inv(v)
– (v1, v2) is valid for s1 * s2 if

• v1 is valid for s1, and
• v2 is valid for s2

– v is valid for type s option if
• v is None or,
• v is Some u and u is valid for type s

– v is valid for type s1 -> s2 if
• for all arguments a, if a is valid for s1, then v a is valid for s2

– v is valid for int if
• always

– [v1; ...; vn] is valid for type s list if
• v1 ... vn are all valid for type s

Natural Numbers

module type NAT =
sig

type t

val from_int : int -> t

...

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

...

end

for all n,
inv (from_int n) == true

Must prove:

let inv n : bool =
n >= 0

Proof strategy: Split into 2 cases.
(1) n > 0, and (2) n <= 0

Natural Numbers

module type NAT =
sig

type t

val from_int : int -> t

...

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

...

end

for all n,
inv (from_int n) == true

Must prove:

let inv n : bool =
n >= 0

inv (from_int n)
== inv (if n <= 0 then 0 else n)
== inv n
== true

Case: n > 0

Natural Numbers

module type NAT =
sig

type t

val from_int : int -> t

...

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

...

end

for all n,
inv (from_int n) == true

Must prove:

let inv n : bool =
n >= 0

inv (from_int n)
== inv (if n <= 0 then 0 else n)
== inv 0
== true

Case: n <= 0

Natural Numbers

module type NAT =
sig

type t

val to_int : t -> int

...

end

module Nat : NAT =
struct

type t = int

let to_int (n:t) : int = n

...

end

for all n,
if inv n then
we must show ... nothing ...
since the output type is int

Must prove:

let inv n : bool =
n >= 0

Natural Numbers

module type NAT =
sig

type t

val map : (t -> t) -> t -> t list

...

end

module Nat : NAT =
struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

...
end

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Must prove:

let inv n : bool =
n >= 0

Proof: By induction on n.

Natural Numbers

module type NAT =
sig

type t

val map : (t -> t) -> t -> t list

...

end

module Nat : NAT =
struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

...
end

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Must prove:

let inv n : bool =
n >= 0

map f n == []

(Note: each value v in [] satisfies inv(v))

Case: n = 0

Proof: By induction on nat n.

Natural Numbers

module type NAT =
sig

type t

val map : (t -> t) -> t -> t list

...

end

module Nat : NAT =
struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

...
end

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Must prove:

let inv n : bool =
n >= 0

map f n == f n :: map f (n-1)
Case: n > 0

Proof: By induction on nat n.

Natural Numbers

module type NAT =
sig

type t

val map : (t -> t) -> t -> t list

...

end

module Nat : NAT =
struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

...
end

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Must prove:

let inv n : bool =
n >= 0

map f n == f n :: map f (n-1)

By IH, map f (n-1) is valid for t list.

Case: n > 0

Proof: By induction on nat n.

Natural Numbers

module type NAT =
sig

type t

val map : (t -> t) -> t -> t list

...

end

module Nat : NAT =
struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

...
end

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Must prove:

let inv n : bool =
n >= 0

map f n == f n :: map f (n-1)

By IH, map f (n-1) is valid for t list.
Since f valid for t -> t and n valid for t
f n::map f (n-1) is valid for t list

Case: n > 0

Proof: By induction on nat n.

Natural Numbers

module type NAT =
sig

type t

val map : (t -> t) -> t -> t list

...

end

module Nat : NAT =
struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

...
end

End result: We have proved a strong
property (n >= 0) of every
value with abstract type Nat.t

Hooray! n is never
negative so we
don’t infinite loop

One More example

module type NAT =
sig

type t

val from_int : int -> t

val to_int : t -> int

val map : (t -> t) -> t -> t list

val foo : (t -> t) -> t

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let to_int (n:t) : int = n

let rec map f n =
if n = 0 then []
else f n :: map f (n-1)

let foo f = f (-1)

end
let inv n : bool =
n >= 0

One More Example

module type NAT =
sig

type t

...

val foo : (t -> t) -> t

end

module Nat : NAT =
struct
...

let foo f = f (-1)

end

let inv n : bool =
n >= 0

for all f valid for type t -> t
foo f is valid for type t

Must prove:
Proof?

Consider any f valid for type t -> t
for all arguments v, if inv (v) then inv (f v).
What can we prove about f (-1) ?

One More example

module type NAT =
sig

type t

val from_int : int -> t

val to_int : t -> int

val map : (t -> t) -> t -> t list

val foo : (t -> t) -> t

end

module Nat : NAT =
struct

type t = int

let from_int (n:int) : t =
if n <= 0 then 0 else n

let to_int (n:t) : int = n

let rec map f n =
if n = 0 then []
else f n :: map f (n-1)

let foo f = f (-1)

end
let inv n : bool =
n >= 0

challenge:
create a program that

loops forever

Summary for Representation Invariants
• The signature of the module tells you what to prove

• Roughly speaking:
– assume invariant holds on values with abstract type on the way in
– prove invariant holds on values with abstract type on the way out

	Modules�and Representation Invariants
	Efficient Data Structures
	Efficient Data Structures
	representation invariants
	A Signature for Sets
	Sets as Lists without Duplicates
	Back to Sets
	Implementing Representation Invariants
	Debugging with Representation Invariants
	Debugging with Representation Invariants
	A Signature for Sets
	Representation Invariants Pictorially
	Representation Invariants Pictorially
	Repeating myself
	Design with Representation Invariants
	Proving the rep Invariant�for the Set ADT
	Representation Invariants
	Representation Invariants
	Aside: Universal Theorems
	Aside: Conditional Theorems
	Aside: Conditional Theorems
	Aside: Conditional Theorems
	Representation Invariants
	Representation Invariants
	Representation Invariants
	Representation Invariants
	Representation Invariants
	Representation Invariants
	Representation Invariants
	Representation Invariants: a Few Types
	representation invariants�for higher types
	Representation Invariants: More Types
	Representation Invariants: More Types
	“valid for type t”
	Representation Invariants: More Types
	Representation Invariants: More Types
	Representation Invariants: More Types
	Representation Invariants: More Types
	Representation Invariants: More Types
	Representation Invariants: More Types
	another example
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Look to the signature to figure out what to verify
	Verifying The Invariant
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	Natural Numbers
	One More example
	One More Example
	One More example
	Summary for Representation Invariants

