In COS 226, you learned about all kinds of clever data structures:

• red-black trees
• union-find sets
• tries, ...

Not just any tree is a red-black tree. In order to be a red-black tree, you need to obey several *invariants*:

• eg: keys are in order in the tree

Operations such as look-up, *depend upon* those invariants to be correct. *All inputs to look-up must satisfy the in-order invariant.*
Efficient Data Structures

Operations such as look-up, depend upon those invariants to be correct. All inputs to look-up must satisfy the in-order invariant.

key Question: How do you arrange for that to happen when client code is using your interface & calling your functions?

Answer: Use abstract types & representation invariants.
REPRESENTATION INVARIANTS
module type SET =

sig

 type 'a set
 val empty : 'a set
 val mem : 'a -> 'a set -> bool
 val add : 'a -> 'a set -> 'a set
 val rem : 'a -> 'a set -> 'a set
 val size : 'a set -> int
 val union : 'a set -> 'a set -> 'a set
 val inter : 'a set -> 'a set -> 'a set

end
module Set2 : SET =
 struct
 type 'a set = 'a list
 let empty = []
 let mem = List.mem
 (* add: check if already a member *)
 let add x l = if mem x l then l else x::l
 let rem x l = List.filter ((<> x) x) l
 (* size: list length is number of unique elements *)
 let size l = List.length l
 (* union: discard duplicates *)
 let union l1 l2 = List.fold_left
 (fun a x -> if mem x l2 then a else x::a) l2 l1
 let inter l1 l2 = List.filter (fun h -> mem h l2) l1
 end
The interesting operation:

(* size: list length is number of unique elements *)
let size (l: 'a set) : int = List.length l

Why does this work? It depends on an invariant:

All lists supplied as an argument contain no duplicates.

A representation invariant is a property that holds of all values of a particular (abstract) type.
Implementing Representation Invariants

For lists with no duplicates:

(* checks that a list has no duplicates *)
let rec inv (s : 'a set) : bool =
 match s with
 [] -> true
 | hd::tail -> not (mem hd tail) && inv tail

let rec check (s : 'a set) (m:string) : 'a set =
 if inv s then
 s
 else
 failwith m
As a precondition on input sets:

(* size: list length is number of unique elements *)

let size (s:'a set) : int =
 ignore (check s "size: bad set input");
 List.length s
Debugging with Representation Invariants

As a precondition on input sets:

```ocaml
let size (s:'a set) : int =
    ignore (check s "size: bad set input");
    List.length s
```

As a postcondition on output sets:

```ocaml
let add x s =
    let s = if mem x s then s else x::s in
    check s "add: bad set output"
```
module type SET =

sig

 type 'a set
 val empty : 'a set
 val mem : 'a -> 'a set -> bool
 val add : 'a -> 'a set -> 'a set
 val rem : 'a -> 'a set -> 'a set
 val size : 'a set -> int
 val union : 'a set -> 'a set -> 'a set
 val inter : 'a set -> 'a set -> 'a set
end

Suppose we check all the red values satisfy our invariant leaving the module, do we have to check the blue values entering the module satisfy our invariant?
When debugging, we can check our invariant each time we construct a value of abstract type. We then get to assume the invariant on input to the module.
When proving, we prove our invariant holds each time we construct a value of abstract type and release it to the client. We get to assume the invariant holds on input to the module.

Such a proof technique is highly modular: Independent of the client!
You may

assume the invariant \(\text{inv}(i) \) for module inputs \(i \) with abstract type

provided you

prove the invariant \(\text{inv}(o) \) for all module outputs \(o \) with abstract type
A key to writing correct code is understanding your own invariants very precisely.

Try to write down key representation invariants:
- if you write them down then you can be sure you know what they are yourself!
- you may find as you write them down that they were a little fuzzier than you had thought
- easier to check, even informally, that each function and value you write satisfies the invariants once you have written them
- great documentation for others
- great debugging tool if you implement your invariant
- you’ll need them to prove to yourself that your code is correct
PROVING THE REP INVARIANT FOR THE SET ADT
Representation Invariant for sets without duplicates:

```ocaml
let rec inv (l : 'a set) : bool =
    match l with
    [] -> true
    | hd::tail -> not (mem hd tail) && inv tail
```

Definition of empty:

```ocaml
let empty : 'a set = []
```

Proof Obligation:

```ocaml
inv (empty) == true
```

Proof:

```ocaml
inv (empty)
== inv []
== match [] with [] -> true | hd::tail -> ...
== true
```
Representation Invariants

Representation Invariant for sets without duplicates:

let rec inv (l : 'a set) : bool =
 match l with
 | [] -> true
 | hd::tail -> not (mem hd tail) && inv tail

Checking add:

let add (x:'a) (l:'a set) : 'a set =
 if mem x l then l else x::l

Proof obligation:

for all x:'a and for all l:'a set,

if inv(l) then inv (add x l)
Aside: Universal Theorems

Lots of theorems (like the one we just saw) have the form:

\[\forall x : t. \ P(x) \]

To prove such theorems, we often pick an arbitrary representative \(r \) of the type \(t \) and then prove \(P(r) \) is true.

(Often times we just use “\(x \)” as the name of the representative. This just helps prevent a proliferation of names.)

If we can’t do the proof by picking an arbitrary representative, we may want to split values of type \(t \) into cases or use induction.
Aside: Conditional Theorems

Lots of theorems (also like the one we just saw) have the form:

\[
\text{if } P(x) \text{ then } Q(y)
\]

To prove such theorems, we typically assume \(P(x) \) is true and then under that assumption, prove \(Q(y) \) is true.
Lots of theorems (also like the one we just saw) have the form:

if $P(x)$ then $Q(y)$

To prove such theorems, we typically assume $P(x)$ is true and then under that assumption, prove $Q(y)$ is true.

Such conditionals are actually logical implications:

$P(x) \implies Q(y)$
Aside: Conditional Theorems

Putting ideas together, proving:

for all $x:t, y:t'$, if $P(x)$ then $Q(y)$

will involve:

(1) picking arbitrary $x:t$, $y:t'$
(2) assuming $P(x)$ is true and then using that assumption to
(3) prove $Q(y)$ is true.
Theorem: for all \(x: 'a \) and for all \(l: 'a \ set \), if \(\text{inv}(l) \) then \(\text{inv} (\text{add} x l) \)

Proof:

1. pick an arbitrary \(x \) and \(l \).
2. assume \(\text{inv}(l) \).

Break into two cases:

--- one case when \(\text{mem} \ x \ l \) is true
--- one case where \(\text{mem} \ x \ l \) is false
Theorem: for all \(x: 'a \) and for all \(l: 'a \text{ set} \), if \(\text{inv}(l) \) then \(\text{inv} (\text{add} x l) \)

Proof:

(1) pick an arbitrary \(x \) and \(l \). (2) assume \(\text{inv}(l) \).

case 1: assume (3): \(\text{mem} x l == \text{true} \):

\[
\begin{align*}
\text{inv} (\text{add} x l) &= \text{inv} (\text{if mem x l then l else x::l}) & \text{(eval)} \\
&= \text{inv} (l) & \text{(by (3), eval)} \\
&= \text{true} & \text{(by (2))}
\end{align*}
\]
Theorem: for all $x : 'a$ and for all $l : 'a$ set, if $\text{inv}(l)$ then $\text{inv} (\text{add } x \ l)$

Proof:

(1) pick an arbitrary x and l. (2) assume $\text{inv}(l)$.

case 2: assume (3) not (mem x l) == true:

\[
\begin{align*}
\text{inv} (\text{add } x \ l) \\
&= \text{inv} (\text{if mem x l then l else x::l}) \quad \text{(eval)} \\
&= \text{inv} (x::l) \quad \text{(by (3))} \\
&= \text{not (mem x l) } \&\& \text{inv (l)} \quad \text{(by eval)} \\
&= \text{true } \&\& \text{inv(l)} \quad \text{(by (3))} \\
&= \text{true } \&\& \text{true} \quad \text{(by (2))} \\
&= \text{true} \quad \text{(eval)}
\end{align*}
\]
Representation Invariants

Representation Invariant for sets without duplicates:

```ocaml
let rec inv (l : 'a set) : bool =
  match l with
  | [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking `rem`:

```ocaml
let rem (x:'a) (l:'a set) : 'a set =
  List.filter ((<> x) x) l
```

Proof obligation?

for all `x: 'a` and for all `l: 'a set`,

if `inv(l)` then `inv (rem x l)`

assume invariant on input

prove invariant on output
Representation Invariants

Representation Invariant for sets without duplicates:

```ocaml
let rec inv (l : 'a set) : bool =
    match l with
    | [] -> true
    | hd::tail -> not (mem hd tail) && inv tail
```

Checking size:

```ocaml
let size (l:'a set) : int =
    List.length l
```

Proof obligation?

no obligation – does not produce value with type ‘a set
Representation Invariants

Representation Invariant for sets without duplicates:

```ocaml
let rec inv (l : 'a set) : bool =
    match l with
    [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking union:

```ocaml
let union (l1:'a set) (l2:'a set) : 'a set =
...```

Proof obligation?

for all l1:'a set and for all l2:'a set,

if inv(l1) and inv(l2) then inv (union l1 l2)

assuming invariant on input

prove invariant on output
Representation Invariants

Representation Invariant for sets without duplicates:

```
let rec inv (l : 'a set) : bool =
 match l with
 | [] -> true
 | hd::tail -> not (mem hd tail) && inv tail
```

Checking inter:

```
let inter (l1:'a set) (l2:'a set) : 'a set =
 ...
```

Proof obligation?

for all l1:'a set and for all l2:'a set,
if inv(l1) and inv(l2) then inv (inter l1 l2)

assume invariant on input
prove invariant on output
Given a module with abstract type \( t \)

Define an invariant \( \text{Inv}(x) \)

Assume arguments to functions satisfy \( \text{Inv} \)

Prove results from functions satisfy \( \text{Inv} \)

```
sig
 type t
 val value : t
 val constructor : int -> t
 val transform : int -> t -> t
 val destructor : t -> int
end
```

prove: \( \text{Inv}(\text{value}) \)

prove: for all \( x: \text{int} \), \( \text{Inv}(\text{constructor } x) \)

prove: for all \( x: \text{int} \), for all \( v: t \),
    if \( \text{Inv}(v) \)
    then \( \text{Inv}(\text{transform } x \ v) \)

assume \( \text{Inv}(t) \)
REPRESENTATION INVARIANTS FOR HIGHER TYPES
Representation Invariants: More Types

What about more complex types?

eg: for abstract type \( t \), consider: \( \text{val op : } t \times t \rightarrow t \text{ option} \)

Basic concept:

• Assume arguments are “valid” and prove results “valid”
• What it means to be “valid” depends on the type of the value
What about more complex types?

eg: for abstract type `t`, consider: `val op : t * t -> t option`

Basic concept:

- Assume arguments are “valid” and prove results “valid”
- What it means to be “valid” depends on the type of the value
- We are going to decide whether “x is valid for type s”
What about more complex types?

**eg:** for abstract type \( t \), consider: \( \text{val op : } t \times t \rightarrow t \text{ option} \)

We know what it means to be a valid value \( v \) for abstract type \( t \):

- \( \text{Inv}(v) \) must be true

What is a valid pair? \( v \) is valid for type \( s_1 \times s_2 \) if

- (1) \( \text{fst } v \) is valid for type \( s_1 \), and
- (2) \( \text{snd } v \) is valid for type \( s_2 \)

Equivalently: \( (v_1, v_2) \) is valid for type \( s_1 \times s_2 \) if

- (1) \( v_1 \) is valid for type \( s_1 \), and
- (2) \( v_2 \) is valid for type \( s_2 \)
What is a valid pair? \( v \) is valid for type \( s_1 \times s_2 \) if

1. \( \text{fst} \ v \) is valid for \( s_1 \), and
2. \( \text{snd} \ v \) is valid for \( s_2 \)

eg: for abstract type \( t \), consider: \( \text{val op : } t \times t \rightarrow t \)

must prove to establish rep invariant:
for all \( x : t \times t \),
if \( \text{Inv(fst} \ x) \) and \( \text{Inv(snd} \ x) \) then
\( \text{Inv (op} \ x) \)

Equivalent Alternative:

must prove to establish rep invariant:
for all \( x_1:t \), \( x_2:t \)
if \( \text{Inv(x1)} \) and \( \text{Inv(x2)} \) then
\( \text{Inv (op (x1, x2))} \)
What is a valid option? \( v \) is valid for type \( \texttt{s1 option} \) if

1. \( v \) is \texttt{None}, or
2. \( v \) is \texttt{Some } u, and \( u \) is valid for type \( \texttt{s1} \)

eg: for abstract type \( t \), consider: \( \text{val op : } t \times t \rightarrow t \text{ option} \)

must prove to satisfy rep invariant:

for all \( x : t \times t \),

if Inv(fst \( x \)) and Inv(snd \( x \))
then

either:

1. \( \text{op } x \) is \texttt{None} or
2. \( \text{op } x \) is \texttt{Some } u and Inv \( u \)
Suppose we are defining an abstract type \( t \).

Consider happens when the type \( \text{int} \) shows up in a signature.

The type \( \text{int} \) does not involve the abstract type \( t \) at all, in any way.

**eg:** in our set module, consider:  
\[
\text{val size : } t \rightarrow \text{int}
\]

When is a value \( v \) of type \( \text{int} \) valid?

All values \( v \) of type \( \text{int} \) are valid

- \( \text{val size : } t \rightarrow \text{int} \)
- \( \text{val const : } \text{int} \)
- \( \text{val create : } \text{int} \rightarrow t \)

- Must prove nothing
- Must prove nothing
- For all \( v : \text{int} \), assume nothing about \( v \), must prove Inv (create \( v \))
What is a valid function? Value \( f \) is valid for type \( t_1 \rightarrow t_2 \) if

- for all inputs \( \text{arg} \) that are valid for type \( t_1 \),
- it is the case that \( f \text{ arg} \) is valid for type \( t_2 \)

\[ \text{Note: We've been using this idea all along for all operations!} \]

eg: for abstract type \( t \), consider: \( \text{val op : } t \times t \rightarrow t \text{ option} \)

must prove to satisfy rep invariant:

\begin{align*}
\text{for all } x : t \times t, \\
\text{if Inv(fst x) and Inv(fst x)} \\
\text{then} \\
\text{either:} \\
(1) \text{ op x == None} \text{ or} \\
(2) \text{ op x == Some u and Inv u}
\end{align*}

valid for type \( t \times t \) (the argument)

valid for type \( t \text{ option} \) (the result)
What is a valid function? Value \( f \) is valid for type \( t_1 \rightarrow t_2 \) if

- for all inputs \( \text{arg} \) that are valid for type \( t_1 \),
- it is the case that \( f \ \text{arg} \) is valid for type \( t_2 \)

Example: for abstract type \( t \), consider:

\[
\text{val op : (} t \rightarrow t \text{)} \rightarrow t
\]

must prove to satisfy rep invariant:

\[
\text{for all } x : t \rightarrow t, \\
\quad \text{if} \\
\quad \{ \text{for all arguments } \text{arg:} t, \\
\quad \quad \text{if Inv(arg) then Inv(x arg) } \} \\
\quad \text{then} \\
\quad \text{Inv (op x)}
\]

valid for type \( t \rightarrow t \)

valid for type \( t \)

(the argument)

(the result)
Representation Invariants: More Types

sig
  type t
  val create : int -> t
  val incr : t -> t
  val apply : t * (t -> t) -> t
  val check_t : t -> t
end

representation invariant:
let inv x = x >= 0

function apply, must prove:
  for all x:t,
  for all f:t -> t
    if x valid for t
    and f valid for t -> t
    then f x valid for t

Proof: By (1) and (2), inv(f x)
ANOTHER EXAMPLE
module type NAT =
  sig
    type t
    val from_int : int -> t
    val to_int : t -> int
    val map : (t -> t) -> t -> t list
  end
module type NAT = 
  sig
    type t
    val from_int : int -> t
    val to_int : t -> int
    val map : (t -> t) -> t -> t list
  end

module Nat : NAT = 
  struct
    type t = int
    let from_int (n:int) : t =
      if n <= 0 then 0 else n
    let to_int (n:t) : int = n
    let rec map f n =
      if n = 0 then []
      else f n :: map f (n-1)
  end
module type NAT = 
  sig
    type t
    val from_int : int -> t
    val to_int : t -> int
    val map : (t -> t) -> t -> t list
  end

module Nat : NAT =
  struct
    type t = int
    let from_int (n:int) : t =
      if n <= 0 then 0 else n
    let to_int (n:t) : int = n
    let rec map f n =
      if n = 0 then []
      else f n :: map f (n-1)
  end

let inv n : bool =
  n >= 0
module type NAT = sig
  type t
  val from_int : int -> t
  val to_int : t -> int
  val map : (t -> t) -> t -> t list
end

let inv n : bool = n >= 0

since function result has type t, must prove the output satisfies inv()
can assume inv(x) for all inputs; don't need to prove anything of the outputs with type int

for map f x, assume:
(1) inv(x), and
(2) f’s results satisfy inv() when it’s inputs satisfy inv().
then prove that all elements of the output list satisfy inv()
Verifying The Invariant

In general, we use a type-directed proof methodology:

• Let \( t \) be the abstract type and \( \text{inv()} \) the representation invariant
• For each value \( v \) with type \( s \) in the signature, we must check that \( v \) is valid for type \( s \) as follows:

  – \( v \) is valid for \( t \) if
    • \( \text{inv}(v) \)
  – \((v_1, v_2)\) is valid for \( s_1 \ast s_2 \) if
    • \( v_1 \) is valid for \( s_1 \), and
    • \( v_2 \) is valid for \( s_2 \)
  – \( v \) is valid for type \( s \) option if
    • \( v \) is None or,
    • \( v \) is Some \( u \) and \( u \) is valid for type \( s \)
  – \( v \) is valid for type \( s_1 \rightarrow s_2 \) if
    • for all arguments \( a \), if \( a \) is valid for \( s_1 \), then \( v \ a \) is valid for \( s_2 \)
  – \( v \) is valid for \( \text{int} \) if
    • always
  – \([v_1; \ldots; v_n]\) is valid for type \( s \) list if
    • \( v_1 \ldots v_n \) are all valid for type \( s \)
module type NAT = 
  sig
    type t
    val from_int : int -> t
    ...
  end

module Nat : NAT =
  struct
    type t = int
    let from_int (n:int) : t =
      if n <= 0 then 0 else n
    ...
  end

let inv n : bool = n >= 0

Must prove:
for all n,
  inv (from_int n) == true

Proof strategy: Split into 2 cases.
(1) n > 0, and (2) n <= 0
Natural Numbers

module type NAT =
  sig
    type t
    val from_int : int -> t
    ...
  end

module Nat : NAT =
  struct
    type t = int
    let from_int (n:int) : t =
      if n <= 0 then 0 else n
    ...
  end

let inv n : bool =
  n >= 0

Must prove:
  for all n,
  inv (from_int n) == true

Case: n > 0
  inv (from_int n)
  == inv (if n <= 0 then 0 else n)
  == inv n
  == true
Natural Numbers

```
module type NAT =
 sig
 type t
 val from_int : int -> t
 ...
 end

module Nat : NAT =
 struct
 type t = int
 let from_int (n:int) : t =
 if n <= 0 then 0 else n
 ...
 end
```

Must prove:
```
for all n,
 inv (from_int n) == true
```

Case: n <= 0
```
inv (from_int n) == inv (if n <= 0 then 0 else n) == inv 0 == true
```
Natural Numbers

module type NAT =
  sig
    type t
    val to_int : t -> int
  end

module Nat : NAT =
  struct
    type t = int
    let to_int (n:t) : int = n
  end

must prove:

for all n,
  if inv n then
  we must show ... nothing ...
  since the output type is int

let inv n : bool = n >= 0
module type NAT =
  sig
    type t
    val map : (t -> t) -> t -> t list
  end

module Nat : NAT =
  struct
    type t = int
    let rep map f n =
      if n = 0 then []
      else f n :: map f (n-1)
    ...
  end

must prove:

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Proof: By induction on n.
module type NAT =
  sig
    type t
    val map : (t -> t) -> t -> t list
  end

module Nat : NAT =
  struct
    type t = int
    let rep map f n =
      if n = 0 then []
      else f n :: map f (n-1)
    ... 
  end

let inv n : bool =
  n >= 0

(map f n == [])
(Note: each value v in [ ] satisfies inv(v))

Case: n = 0

Proof: By induction on nat n.
module type NAT =
  sig
    type t
    val map : (t -> t) -> t -> t list
  end

module Nat : NAT =
  struct
    type t = int
    let rep map f n =
      if n = 0 then []
      else f n :: map f (n-1)
    ...
  end

Must prove:
for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Proof: By induction on nat n.

let inv n : bool =
  n >= 0

Case: n > 0
map f n  == f n :: map f (n-1)
Natural Numbers

```ocaml
module type NAT = sig
 type t
 val map : (t -> t) -> t -> t list
 ...
end
```

```ocaml
module Nat : NAT = struct
 type t = int
 let rep map f n =
 if n = 0 then []
 else f n :: map f (n-1)
 ...
end
```

**Must prove:**

- for all \( f \) valid for type \( t \) -> \( t \)
- for all \( n \) valid for type \( t \)
- \( \text{map} \ f \ n \) is valid for type \( t \ list \)

**Proof:** By induction on nat \( n \).

**Case:** \( n > 0 \)

- \( \text{map} \ f \ n \) == \( f \ n :: \text{map} \ f \ (n-1) \)

By IH, \( \text{map} \ f \ (n-1) \) is valid for \( t \ list \).
module type NAT =
  sig
    type t
    val map : (t -> t) -> t -> t list
  end

module Nat : NAT =
  struct
    type t = int
    let rep map f n =
      if n = 0 then []
      else f n :: map f (n-1)
    ... 
  end

Must prove:
  for all f valid for type t -> t
  for all n valid for type t
  map f n is valid for type t list

Proof: By induction on nat n.
  let inv n : bool = n >= 0

Case: n > 0
  map f n == f n :: map f (n-1)

By IH, map f (n-1) is valid for t list.
Since f valid for t -> t and n valid for t
f n::map f (n-1) is valid for t list
module type NAT =
  sig
    type t
    val map : (t -> t) -> t -> t list
    ...
  end

module Nat : NAT =
  struct
    type t = int
    let rep map f n =
      if n = 0 then []
      else f n :: map f (n-1)
    ...
  end

End result: We have proved a strong property (n >= 0) of every value with abstract type Nat.t

Hooray! n is never negative so we don’t infinite loop
module type NAT =

sig

type t

val from_int : int -> t
val to_int : t -> int
val map : (t -> t) -> t -> t list
val foo : (t -> t) -> t

end

module Nat : NAT =

struct

  type t = int

  let from_int (n:int) : t =
    if n <= 0 then 0 else n

  let to_int (n:t) : int = n

  let rec map f n =
    if n = 0 then []
    else f n :: map f (n-1)

  let foo f = f (-1)

end

let inv n : bool =
n >= 0
module type NAT =
  sig
    type t
    ...
    val foo : (t -> t) -> t
  end

module Nat : NAT =
  struct
    ...
    let foo f = f (-1)
  end

let inv n : bool =
  n >= 0

Must prove:

for all f valid for type t -> t
foo f is valid for type t

Proof?

Consider any f valid for type t -> t
for all arguments v, if inv (v) then inv (f v).
What can we prove about f (-1)?
module type NAT =
  sig
  type t
  val from_int : int -> t
  val to_int : t -> int
  val map : (t -> t) -> t -> t list
  val foo : (t -> t) -> t
  end

module Nat : NAT =
  struct
    type t = int
    let from_int (n:int) : t =
    if n <= 0 then 0 else n
    let to_int (n:t) : int = n
    let rec map f n =
    if n = 0 then []
    else f n :: map f (n-1)
    let foo f = f (-1)
  end

let inv n :
  n >= 0

challenge:
create a program that loops forever
Summary for Representation Invariants

• The signature of the module tells you what to prove

• Roughly speaking:
  – assume invariant holds on values with abstract type on the way in
  – prove invariant holds on values with abstract type on the way out