Modules and Representation Invariants

COS 326 Andrew Appel Princeton University

slides copyright 2018 David Walker and Andrew Appel permission granted to reuse these slides for non-commercial educational purposes

Efficient Data Structures

In COS 226, you learned about all kinds of clever data structures:

- red-black trees
- union-find sets
- tries, ...

Not just any tree is a red-black tree. In order to be a red-black tree, you need to obey several *invariants*:

• eg: keys are in order in the tree

Operations such as look-up, *depend upon* those invariants to be correct. *All inputs to look-up must satisfy the in-order invariant*.

Efficient Data Structures

Operations such as look-up, depend upon those invariants to be correct. All inputs to look-up must satisfy the in-order invariant.

Key Question: How do you arrange for that to happen when client code is using your interface & calling your functions?

<u>Answer:</u> Use abstract types & representation invariants.

REPRESENTATION INVARIANTS

A Signature for Sets

```
module type SET =
  sig
    type 'a set
    val empty : 'a set
    val mem : 'a -> 'a set -> bool
    val add : 'a -> 'a set -> 'a set
    val rem : 'a -> 'a set -> 'a set
    val size : 'a set -> int
    val union : 'a set -> 'a set -> 'a set
    val inter : 'a set -> 'a set -> 'a set
  end
```

Sets as Lists without Duplicates

```
module Set2 : SET =
  struct
    type 'a set = 'a list
    let empty = []
    let mem = List.mem
    (* add: check if already a member *)
    let add x l = if mem x l then l else x::l
    let rem x l = List.filter ((<>) x) l
    (* size: list length is number of unique elements *)
    let size 1 = List.length 1
    (* union: discard duplicates *)
    let union 11 12 = List.fold left
         (fun a x \rightarrow if mem x 12 then a else x::a) 12 11
    let inter 11 12 = List.filter (fun h -> mem h 12) 11
  end
```

Back to Sets

The interesting operation:

(* size: list length is number of unique elements *)
let size (l:'a set) : int = List.length l

Why does this work? It depends on an invariant:

All lists supplied as an argument contain no duplicates.

A *representation invariant* is a property that holds of all values of a particular (abstract) type.

Implementing Representation Invariants

For lists with no duplicates:

```
(* checks that a list has no duplicates *)
let rec inv (s : 'a set) : bool =
   match s with
    [] -> true
    | hd::tail -> not (mem hd tail) && inv tail
let rec check (s : 'a set) (m:string) : 'a set =
   if inv s then
        s
   else
      failwith m
```

Debugging with Representation Invariants

As a precondition on input sets:

```
(* size: list length is number of unique elements *)
let size (s:'a set) : int =
   ignore (check s "size: bad set input");
   List.length s
```

Debugging with Representation Invariants

As a precondition on input sets:

```
(* size: list length is number of unique elements *)
let size (s:'a set) : int =
   ignore (check s "size: bad set input");
   List.length s
```

As a postcondition on output sets:

```
(* add x to set s *)
let add x s =
   let s = if mem x s then s else x::s in
   check s "add: bad set output"
```

A Signature for Sets

```
module type SET =
  siq
    type 'a set
    val empty : 'a set
    val mem : 'a -> 'a set -> bool
    val add : 'a -> 'a set -> 'a set
    val rem : 'a -> 'a set -> 'a set
    val size : 'a set -> int
    val union : 'a set -> 'a set -> 'a set
    val inter : 'a set -> 'a set -> 'a set
  end
```

Suppose we check all the red values satisfy our invariant leaving the module, do we have to check the blue values entering the module satisfy our invariant?

Representation Invariants Pictorially

When debugging, we can check our invariant each time we construct a value of abstract type. We then get to assume the invariant on input to the module.

Representation Invariants Pictorially

When proving, we prove our invariant holds each time we construct a value of abstract type and release it to the client. We *get to assume* the invariant holds on input to the module.

Such a proof technique is *highly modular*: Independent of the client!

Repeating myself

You may

assume the invariant inv(i) for module inputs i with abstract type

provided you

prove the invariant inv(o) for all module outputs o with abstract type

Design with Representation Invariants

A key to writing correct code is understanding your own invariants very precisely

Try to write down key representation invariants

- if you write them down then you can be sure you know what they are yourself!
- you may find as you write them down that they were a little fuzzier than you had thought
- easier to check, even informally, that each function and value you write satisfies the invariants once you have written them
- great documentation for others
- great debugging tool if you implement your invariant
- you'll need them to prove to yourself that your code is correct

PROVING THE REP INVARIANT FOR THE SET ADT

Representation Invariant for sets without duplicates:

Definition of empty:

Proof Obligation:

let empty : `a set = []

inv (empty) == true

Proof:

```
inv (empty)
== inv []
== match [] with [] -> true | hd::tail -> ...
== true
```

Representation Invariant for sets without duplicates:

```
let rec inv (l : 'a set) : bool =
  match l with
  [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking add:

let add (x:'a) (l:'a set) : 'a set =
 if mem x l then l else x::l

Aside: Universal Theorems

Lots of theorems (like the one we just saw) have the form:

forall x:t. P(x)

To prove such theorems, we often pick an arbitrary representative r of the type t and then prove P(r) is true.

(Often times we just use "x" as the name of the representative. This just helps prevent a proliferation of names.)

If we can't do the proof by picking an arbitrary representative, we may want to split values of type t into cases or use induction.

Aside: Conditional Theorems

Lots of theorems (also like the one we just saw) have the form:

if P(x) then Q(y)

To prove such theorems, we typically assume P(x) is true and then under that assumption, prove Q(y) is true.

Aside: Conditional Theorems

Lots of theorems (also like the one we just saw) have the form:

if P(x) then Q(y)

To prove such theorems, we typically assume P(x) is true and then under that assumption, prove Q(y) is true.

Such conditionals are actually logical implications:

P(x) => Q(y)

Aside: Conditional Theorems

Putting ideas together, proving:

```
for all x:t,y:t', if P(x) then Q(y)
```

will involve:

- (1) picking arbitrary x:t, y:t'
- (2) assuming P(x) is true and then using that assumption to
- (3) prove Q(y) is true.

let rec inv (l : 'a	let add (x:'a) (1:'a set) : 'a set =
match 1 with	if mem x l then l else x::l
[] -> true hd::tail -> not	c (mem hd tail) && inv tail

Theorem: for all x:'a and for all I:'a set, if inv(I) then inv (add x I) Proof:

(1) pick an arbitrary x and I. (2) assume inv(I).

Break into two cases:

- -- one case when mem x l is true
- -- one case where mem x l is false

let rec inv (l : 'a	let add (x:'a) (l:'a set) : 'a set =
match 1 with	if mem x l then l else x::l
[] -> true hd::tail -> not	c (mem hd tail) && inv tail

Theorem: for all x:'a and for all I:'a set, if inv(I) then inv (add x I) Proof:

(1) pick an arbitrary x and I. (2) assume inv(I).

case 1: assume (3): mem x l == true:

```
inv (add x l)
== inv (if mem x l then l else x::l)
== inv (l)
== true
```

(eval) (by (3), eval) (by (2))

```
let rec inv (l : 'a set) : bool =
    if
    match l with
    [] -> true
    | hd::tail -> not (mem hd tail) && inv tail
```

let add (x:'a) (l:'a set) : 'a set =
 if mem x l then l else x::l

Theorem: for all x:'a and for all I:'a set, if inv(I) then inv (add x I) Proof:

(1) pick an arbitrary x and I. (2) assume inv(I).

case 2: assume (3) not (mem x l) == true:

inv (add x l)
== inv (if mem x l then l else x::l) (eval)
== inv (x::l) (by (3))
== not (mem x l) && inv (l) (by eval)
== true && inv(l) (by (3))
== true && true (by (2))
== true & (eval)

Representation Invariant for sets without duplicates:

```
let rec inv (l : 'a set) : bool =
  match l with
  [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking rem:

let rem (x:'a) (l:'a set) : 'a set =
 List.filter ((<>) x) l

Representation Invariant for sets without duplicates:

```
let rec inv (l : 'a set) : bool =
  match l with
  [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking size:

let size (l:'a set) : int =
 List.length l

Proof obligation?

no obligation – does not produce value with type 'a set

Representation Invariant for sets without duplicates:

```
let rec inv (l : 'a set) : bool =
  match l with
  [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking union:

```
let union (l1:'a set) (l2:'a set) : 'a set =
   ...
```

Proof obligation? for all 11:'a set and for all 12:'a set, if inv(11) and inv(12) then inv (union 11 12) assume invariant on input prove invariant on output

Representation Invariant for sets without duplicates:

```
let rec inv (l : 'a set) : bool =
  match l with
  [] -> true
  | hd::tail -> not (mem hd tail) && inv tail
```

Checking inter:

```
let inter (l1:'a set) (l2:'a set) : 'a set =
...
```


Representation Invariants: a Few Types

Given a module with abstract type t

Define an invariant Inv(x)

Assume arguments to functions satisfy Inv

Prove results from functions satisfy Inv

REPRESENTATION INVARIANTS FOR HIGHER TYPES

Representation Invariants: More Types

What about more complex types?

eg: for abstract type t, consider: val op : t * t -> t option

Basic concept:

- Assume arguments are "valid" and prove results "valid"
- What it means to be "valid" depends on the *type* of the value

Representation Invariants: More Types

What about more complex types?

eg: for abstract type t, consider: val op : t * t -> t option

Basic concept:

- Assume arguments are "valid" and prove results "valid"
- What it means to be "valid" depends on the *type* of the value
- We are going to decide whether "x is valid for type s"

"valid for type t"

What about more complex types?

eg: for abstract type t, consider: val op : t * t -> t option

We know what it means to be a valid value v for abstract type t:

• Inv(v) must be true

What is a valid pair? v is valid for type s1 * s2 if

- (1) fst v is valid for type s1, and
- (2) snd v is valid for type s2

Equivalently: (v1, v2) is valid for type s1 * s2 if

- (1) v1 is valid for type s1, and
- (2) v2 is valid for type s2

Representation Invariants: More Types

What is a valid pair? v is valid for type s1 * s2 if

- (1) fst v is valid for s1, and
- (2) snd v is valid for s2

eg: for abstract type t, consider: val op : t * t -> t

must prove to establish rep invariant: for all x : t * t, if Inv(fst x) and Inv(snd x) then Inv (op x)

Equivalent Alternative: must prove to establish rep invariant: for all x1:t, x2:t if lnv(x1) and lnv(x2) then lnv (op (x1, x2))

Representation Invariants: More Types

What is a valid option? v is valid for type s1 option if

- (1) v is None, or
- (2) v is Some u, and u is valid for type s1

eg: for abstract type t, consider: val op : t * t -> t option

```
must prove to satisfy rep invariant:
for all x : t * t,
    if Inv(fst x) and Inv(snd x)
    then
        either:
        (1) op x is None or
        (2) op x is Some u and Inv u
```

Suppose we are defining an abstract type t.

Consider happens when the type int shows up in a signature.

The type int does not involve the abstract type t at all, in any way.

eg: in our set module, consider: val size : t -> int

When is a value v of type int valid?

Representation Invariants: More Types

What is a valid function? Value f is valid for type t1 -> t2 if

- for all inputs arg that are valid for type t1,
- it is the case that f arg is valid for type t2

Note: We've been using this idea all along for all operations!

eg: for abstract type t, consider: val op : t * t -> t option

Representation Invariants: More Types

What is a valid function? Value f is valid for type t1 -> t2 if

- for all inputs arg that are valid for type t1,
- it is the case that f arg is valid for type t2

eg: for abstract type t, consider: val op : (t -> t) -> t

Representation Invariants: More Types

sig

```
type t
val create : int -> t
val incr : t -> t
val apply : t * (t -> t) -> t
val check_t : t -> t
end
```

representation invariant: let inv x = x >= 0

function apply, must prove:
 for all x:t,
 for all f:t -> t
 if x valid for t
 and f valid for t -> t
 then f x valid for t

```
struct
```

function apply, must prove: for all x:t, for all f:t -> t if (1) inv(x) and (2) for all y:t, if inv(y) then inv(f y) then inv(f x)

Proof: By (1) and (2), inv(f x)

ANOTHER EXAMPLE

module type NAT = sig

type t

```
val from_int : int -> t
```

```
val to_int : t -> int
```

```
val map : (t -> t) -> t -> t list
```

module type NAT = sig

type t

```
val from_int : int -> t
```

val to_int : t -> int

```
val map : (t -> t) -> t -> t list
```

end

```
module Nat : NAT =
  struct
```

```
type t = int
```

let from_int (n:int) : t =
 if n <= 0 then 0 else n</pre>

```
let to_int (n:t) : int = n
```

```
let rec map f n =
  if n = 0 then []
  else f n :: map f (n-1)
```

module type NAT = sig

type t

```
val from_int : int -> t
```

val to_int : t -> int

```
val map : (t -> t) -> t -> t list
```

end

let inv n : bool = n >= 0 module Nat : NAT =
 struct

type t = int

let from_int (n:int) : t =
 if n <= 0 then 0 else n</pre>

let to_int (n:t) : int = n

let rec map f n =
 if n = 0 then []
 else f n :: map f (n-1)

Look to the signature to figure out what to verify

Verifying The Invariant

In general, we use a type-directed proof methodology:

- Let t be the abstract type and inv() the representation invariant
- For each value v with type s in the signature, we must check that v is valid for type s as follows:
 - v is valid for t if
 - inv(v)
 - (v1, v2) is valid for s1 * s2 if
 - v1 is valid for s1, and
 - v2 is valid for s2
 - v is valid for type s option if
 - v is None or,
 - v is Some u and u is valid for type s
 - v is valid for type s1 -> s2 if
 - for all arguments a, if a is valid for s1, then v a is valid for s2

- v is valid for int if
 - always
- [v1; ...; vn] is valid for type s list if
 - v1 ... vn are all valid for type s

module Nat : NAT = struct

type t = int

. . .

end

let from_int (n:int) : t =
 if n <= 0 then 0 else n</pre>

let inv n : bool =

n >= 0

Must prove:

for all n, inv (from_int n) == true

Proof strategy: Split into 2 cases. (1) n > 0, and (2) $n \le 0$

Must prove:

for all n, inv (from_int n) == true

Case: n > 0

inv (from_int n) == inv (if n <= 0 then 0 else n) == inv n == true

Must prove:

for all n, inv (from_int n) == true module Nat : NAT = struct type t = int

let from_int (n:int) : t =
 if n <= 0 then 0 else n</pre>

end

. . .

let inv n : bool = n >= 0

Case: n <= 0

inv (from_int n)
== inv (if n <= 0 then 0 else n)
== inv 0
== true</pre>

Must prove:

for all n, if inv n then we must show ... nothing ... since the output type is int

module type NAT = sig	
type t	
val map : (t -> t) -> t -> t list	
end	

module Nat : NAT = struct

type t = int

let rep map f n =
if n = 0 then []
else f n :: map f (n-1)

end

let inv n : bool = n >= 0

Must prove:

for all f valid for type t -> t for all n valid for type t map f n is valid for type t list

Proof: By induction on n.

module type NAT = sig

type t

```
val map : (t -> t) -> t -> t list
```

end

. . .

Must prove:

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Proof: By induction on nat n.

module type NAT = sig

type t

```
val map : (t -> t) -> t -> t list
```

end

. . .

Must prove:

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Proof: By induction on nat n.

```
module Nat : NAT =
 struct
  type t = int
  let rep map f n =
   if n = 0 then []
   else f n :: map f (n-1)
                        let inv n : bool =
end
                         n \ge 0
Case: n > 0
mapfn == fn :: mapf(n-1)
```

module type NAT = sig

type t

```
val map : (t -> t) -> t -> t list
```

end

. . .

Must prove:

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Proof: By induction on nat n.

```
module Nat : NAT =
 struct
  type t = int
  let rep map f n =
   if n = 0 then []
   else f n :: map f (n-1)
                        let inv n : bool =
end
                         n \ge 0
Case: n > 0
mapfn == fn :: mapf(n-1)
By IH, map f (n-1) is valid for t list.
```

module type NAT = sig

type t

```
val map : (t -> t) -> t -> t list
```

end

. . .

Must prove:

for all f valid for type t -> t
for all n valid for type t
map f n is valid for type t list

Proof: By induction on nat n.

```
module Nat : NAT =
 struct
  type t = int
  let rep map f n =
   if n = 0 then []
   else f n :: map f (n-1)
                        let inv n : bool =
end
                          n >= 0
Case: n > 0
```

mapfn == fn :: mapf(n-1)

By IH, map f (n-1) is valid for t list. Since f valid for t -> t and n valid for t f n::map f (n-1) is valid for t list

End result: We have proved a strong property (n >= 0) of every value with abstract type Nat.t

One More example

module type NAT = sig

type t

val from_int : int -> t

val to_int : t -> int

```
val map : (t -> t) -> t -> t list
```

val foo : (t -> t) -> t

end

```
let inv n : bool =
n >= 0
```

module Nat : NAT =
 struct

type t = int

let from_int (n:int) : t =
 if n <= 0 then 0 else n</pre>

let to_int (n:t) : int = n

```
let rec map f n =
  if n = 0 then []
  else f n :: map f (n-1)
```

```
let foo f = f(-1)
```

One More Example

module Nat : NAT =
struct
...
let foo f = f (-1)
end

Consider any f valid for type t -> t for all arguments v, if inv (v) then inv (f v). What can we prove about f (-1) ?

One More example

module type NAT = sig

type t

val from_int : int -> t

val to_int : t -> int

```
val map : (t -> t) -> t -> t list
```

val foo : (t -> t) -> t

end	challenge:		
let inv n :	create a program that loops forever		
n >= 0			

```
module Nat : NAT =
  struct
```

```
type t = int
```

let from_int (n:int) : t =
 if n <= 0 then 0 else n</pre>

let to_int (n:t) : int = n

```
let rec map f n =
  if n = 0 then []
  else f n :: map f (n-1)
```

```
let foo f = f(-1)
```

Summary for Representation Invariants

- The signature of the module tells you what to prove
- Roughly speaking:
 - assume invariant holds on values with abstract type on the way in
 - prove invariant holds on values with abstract type on the way out