Computability

COS 326
Andrew W. Appel
Princeton University

slides copyright 2019 Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

FUNCTIONAL PROGRAMMING AS
A MODEL OF COMPUTATION

Untyped lambda-calculus

e:= A.e; | x|ee, Ax.e,

big-step call-by-value evaluation

Ax.e U Ax.e

el U Ax.e e2 Uv2 e[v2/x] v
ele2 U v

ellrecfx=e e2 Uv2 efrecfx=e/f][v2/x] ! v3

ele2 U v3

means same as fun x->e,

small-step general evaluation

(Ax.el) e2 --> elfe2/x]

el->el e2 -->e2’
ele2 --> el’ e2 ele2 --> el e2’
el -—>el’
A.el --> Ax.el’

Let’s use small-step general evaluation for a while . ..

What can we program with just A ?

(a,b) (Ax.xab)

pair (Aa.Ab.Ax.xab) paira b = (a,b)
fst (Ap.p(Axy.x))
snd (Ap.p(Axy.y))

fst (pair a b)

= (Ap.p(Axy.x))((Aa.Ab.Ax.xab)ab)
--> (Ap.p(Axy.x))((Ab.Ax.xab)b)
--> (Ap.p(Axy.x))(Ax.xab)

--> (Ax.xab)(Axy.x)

--> (Axy.x)ab

--> (Ay.a)b

>3

fst(pairab) =a
snd(pairab)=b

Booleans

Henceforth, abbreviate: Axy.E means Ax.Ay.E

true (Axy.x)
false (Axy.y)

if (\xab.xab) if trueab

= (Axab.xab) (Axy.x) a b
--> (Aab. (Axy.x)ab) a b
--> (Ab. (Axy.x)ab) b
--> (Axy.x)ab

--> (Ay.a)b

>3

iftrueab=a
if falseab=>b

Lists

nil (Acn.n) nil =[]
cons (Aht.Acn.cht) cons ht=h:t
match (Aacn.acn) match a ¢ n = match a with
| hit->cht
I->n
(match (cons x y) with match (cons xy) f g
| consht->fht = (Aacn.acn)((Aht.Acn.cht)xy)fg
| nil -> g) --> (Aacn.acn)(Acn.cxy)fg
= fxy --> (Acn. (Acn.cxy)cen) fg
--> (An.fxy)g

--> fxy)

Lists (nil case)

nil (Acn.n) nil =[]
cons (Aht.Acn.cht) consht=h:t
match (Aacn.acn) match a ¢ n = match a with
| ha:t->cht
| [I->n
(match nil with match nil f g
| consht->fht = (Aacn.acn) (Acn.n) fg
| nil->g) --> (Acn. (Acn.n) cn) fg
= 8 --> (Acn.n) fg
-->(An.n) g

-~->g

General inductive datatypes

typet=Aoftl |Boft2|C| D

A Ax.Aabcd.ax
B Ay.Aabcd.by
C Aabcd.c
D Aabcd.d

match_t Auabcd.uabcd

(matchBzwithAx->ax|By->by|C->c|D->d)
= by

Integers

typeint=0 | Sof int

add = (recadd ab->matchawithO->b | Sa’->S(add a’ b))

... if only we had recursive functions!

Can we infinite loop?

e:= A.e; | x|ee,

no recursive functions! Can we infinite-loop without loops?

Q = (AXx.xx) (Ax.xx)
(Ax.xx) (AX.xX)

--> (Ax.xx) (AX.xx)

That doesn’t typecheck!
But who said anything about types, this is untyped lambda-calculus

Recursive functions

Y Af (AX.F(xx)) (Ax.f(xx))

Yg = (Af.(Ax.f(xx))(Ax.f(xx)))g
> (Ax.g(xx))(Ax.g(xx))

> g((Ax.g(xx))(Ax.g(xx))))
= g(Yg)

Fixed points

Let f(x)=1/x

Find a fixed point of f,
that is, a value z such that f(z)=z

Answer: -1

f-1) = 1/(-1)= -1

Recursive functions

Y Af (AX.F(xx)) (Ax.f(xx))

Yg = (Af.(Ax.f(xx))(Ax.f(xx)))g
> (Ax.g(xx))(Ax.g(xx))

> g((Ax.g(xx))(Ax.g(xx))))
= g(Yg)

Yg is a fixed point of g, thatis g(Yg)=Yg

Recursive add function

typeint=0 | Sof int

add = (recadd ab->matchawithO->b | Sa’->S(add a’ b))

... if only we had recursive functions!

add= (recfab->matchawithO->b | Sa’->S(fa’ b))
add = Aab.(recfa->matchawithO->b | Sa’->S(fa’))

add = Aab. Y(Af. Aa. matchawithO->b | Sa’->S(f a’))a

Theorem: for allb, add 2 b =S(S b)

add = Aab. Y\(M Aa. matchawithO->b | Sa’->S(fa’ b)?a

g

add (S(SO))b

= (Aab. Yga)(S(SO))b
= Yg(S(SO))

= g(Yg)(S(SO))

= match S(SO) with O ->b | Sa’ -> S(Yga’)
= 5(Yg(S0O))

=S(match SO with O ->b | S a’ -> S(Yga’))
=5(S(YgO))

=S(S(match O with O ->b | Sa’ -> S(Yga’)))
=S(S b)

Theorem:add 12 =3

typeint=0 | Sof int O=Axy.x S=An.Axy.yn

add (SO) (S(SO)) -->* S(S(S0))

--> (An.Axy.yn) ((An.Axy.yn)((An.Axy.yn)(Axy.x)))
—-> (An.Axy.yn) ((An.Axy.yn)(Axy.y(Axy.x)))

--> (An.Axy.yn) (Axy.y(Axy.y(Axy.x)))

> Axy.y (Axy.y (Axy.y(Axy.x)))

None of our small-step evaluation el o2 = elle2/
rules apply here, so this must be
the “answer,” also called the el -->el’ e2 > e2’

ele2 --> el’ e2 ele2 --> el e2’

“normal form” of add (SO) (S(SO)).

el ->el’

It is our representation of 3 Ax.el --> Ax.el’

Try it again: factorial

g = M. An. if n=0 then 1 else n-f(n-1)
fact=Yg

fact 3 =Yg3

=g(Yg)3

= (Af. An. if n=0 then 1 else n-f(n-1)) (Yg) 3

= if 3=0 then 1 else 3:((Yg)(3-1))

= 3-(Yg2)

=3-(g(Yg)2) = 3:(if 2=0 then 1 else 2:(Yg(2-1)))

= 3:(2:(Yg1)) = 3-(2-(g(Yg)1))

= 3:(2-(if 1=0 then 1 else 1:(Yg(1-1)))) = 3-(2-(1-Yg0))

= 3-(2:(1-if 0=0 then 1 else 0-(Yg(0-1)))) = 3-(2:(1-1)) = 6

Now we have everything!

tuples, Booleans, if-statements, lists, integers,
inductive data types, recursive functions. ..

We can implement a substitution-based interpreter.

[paste in lecture 6 here . . .|

type var = int

type exp = Fun of var*exp | Var of var | App of exp*exp

Models of computation

 Herbrand-Godel recursive functions (1935)
developed by Kleene from ideas by Herbrand and Godel

e A-calculus (1935)
developed by Church with his students Rosser & Kleene

e Turing machine (1936)
developed by Turing

Models of computation

Theorem (1935, Kleene): any function you can implement in H-G recursive
functions, you can implement in A-calculus.
Proof: previous slides—all those data structures, numbers, recursion, etc.

Theorem (1935, Kleene): any function you can implement in A-calculus,
you can implement in Herbrand-Godel recursive functions.

Theorem (1936, Church): There’s a mathematical function not
implementable in A-calculus (the “halts” function).

.2 Theorem (1936, Turing,): There’s a mathematical function not imple-
~ mentable in Turing machines (the “halts” function). (pang! church published first!)

Theorem (1936, Turing): any function you can implement in A-calculus, you
can implement in Turing machines.
Proof: Turing machine can simulate the substitution-based interpreter.

Theorem (1936, Turing): any function you can implement in Turing
machines, you can implement in A-calculus.
Proof: Program Turing-machine simulator in A-calculus.

[Models of computation

Theorem (1936, Turing): any function you can implement in A-calculus, you

can implement in Turing machines.
Proof: Turing machine can simulate the substitution-based interpreter.

Do you believe this proof?
You’'ve seen the substitution-based interpreter in Ocaml;
could that be programmed to run on a von Neumann machine?

(There’s strong evidence for “yes”, it’s called “the OCaml| compiler”)

(but a von Neumann machine is not a Turing machine, one has to
simulate a von Neumann machine on a Turing machine — not difficult.

[Models of computation

W | heorem (1936, Turing): any function you can implement in Turing
~ machines, you can implement in A-calculus.
Proof: Program Turing-machine simulator in A-calculus.

Do you believe this proof?
Could you write a pure functional Ocaml program that simulates a Turing

machine?

(Of course you could!)

[Summary:]

Programming
Languages

Computers

sy |
e
8 - p E
; g 4
e 3 1 3
4 =
i > SRR
- 'S
F vy
i ¥
S e
“s %
¢ ' f i » ;&
o ‘{5 4 .' ’

Church Kleene Turing Von Neumann

Princeton, New Jersey

Models of computation

In 1950, Turing even made the far-fetched claim
that by the year 2000,
a computer might have a billion bits of memory

and might be able to simulate human conversation.

Hey Siri,
what's the
"Turing Test"?

Uncomputability:
What we can’t compute

Entscheidungsproblem (1928)

Is there a mathematical function that cannot be computed
* by a Turing machine?

* by an expression in A-calculus?

by avon Neumann machine?

by an OCaml program?

* by any kind of mechanical process?

Answer: Yes indeed. Let's define that function
and then show that it can't be implemented

Some meta-notation

type var = int

type exp = Fun of var*exp | Var of var | App of exp*exp

We want to talk about the AST of a given term:
When e is aA-expression, [e]isitsrepresentationin exp

x| =Var i
el e2] =App |[el][e2]
Ax;, el] =Fun i |el]

Datatype representation

type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

This data type can also be expressed in pure A-calculus:

Fun = AvAe Aabc.ave
Var = Av Aabc.bv
App = Ae,e, Aabc.ce,e,

What can we compute?

type var = int

type exp = Fun of var*exp | Var of var | App of exp*exp

1. Write a A-function interp such that

For any expression e
that evaluates in A-calculus to a normal form ¢’,

(thatis, e-->* e’ and e’ cannot take a step)

interp [e] -->* [€']

(Yes, this is just a version of the substitution-based interpreter
from lecture 6, and homework 4)

What will interp do on infinite loops?

Suppose e never gets to a normal form, that is,
e-->e -->e” -->e” .. forever

Then

interp [e] > ...->...-> .. -> . -> L > L

interp [e] also does not have a normal form,

that is,

interp [e] infinite loops.

What can we compute?

type var = int

type exp = Fun of var*exp | Var of var | App of exp*exp

2. Write a quoting function such that kwoht e = [e]

Impossible:

Consider el = (Ax.x)y and e2=y

kwoht el = kwoht ((Ax.x)y) = kwoht y = kwoht e2
el| =App (Fun(i,Var i) ,Var j)

e2| =Var j

el|#[e2]

What can we compute?

type var = int

type exp = Fun of var*exp | Var of var | App of exp*exp

3. Write a quoting function such that quote [e] = [[e]]

Easy:

let rec quote e =

match e with

Fun(i,el) -> App (App Fun i) (quote el)
Vari -> App Vari

App(el,e2) -> App (App App (quote el)) (quote e2)

What can we compute?

type var = int

type exp = Fun of var*exp | Var of var | App of exp*exp

4. Write a A-function halts such that

For any expression e,

if e-->*e’ and e’ cannot step, then halts [e]| = true

if e infinite loops no matter which reductions you do,
then halts [e] = false

Claim: you cannot write such a function

What can we compute?

Proof by contradiction. Suppose there exists a A-expression halts
such that for any expression e,
if e-->*e’ and e’ cannot step, then halts [e]| = true
if e infinite loops no matter which reductions you do,
then halts [e] = false

Then we can write the A-expression
f = Ax. if halts (App x (quote x)) then Q else true

Now, either f[f|] halts, or it doesn’t.
f [f] = if halts (App [f] (quote [f])) then Q else true

What can we compute?

Suppose: For any expression e,
if e-->*e’ and e’ cannot step, then halts [e]| = true
if e infinite loops no matter which reductions you do, then halts [e] = false

Write a quoting function such that quote [e| = [[e]]
f = Ax. if halts (App x (quote x)) then Q else true

f [f] = if halts (App [f] (quote [f])) then Q else true
App [f] (quote [f]) = quote (f[f]) =[f[f]]

If f[f] halts, then f[f] doesn’t halt.
If f[f| doesn’t halt, then f[f] halts.

But we only made one hypothetical assumption so far: that s,
one can implement a “halts” function. That leads to a contradiction.
So therefore, the “halts” function cannot be implemented.

That's what Alonzo Church proved in 1936

(with ideas from Kleene)

\

Curch Kleene*

Princeton, New Jersey

	Computability
	functional programming as�a model of computation
	Untyped lambda-calculus
	What can we program with just λ ?
	Booleans
	Lists
	Lists (nil case)
	General inductive datatypes
	Integers
	Can we infinite loop?
	Recursive functions
	Fixed points
	Recursive functions
	Recursive add function
	Theorem: for all b, add 2 b = S(S b)
	Theorem: add 1 2 = 3
	Try it again: factorial
	Now we have everything!
	Models of computation
	Models of computation
	Models of computation
	Models of computation
	Summary:
	Models of computation
	Uncomputability:�What we can’t compute
	Entscheidungsproblem (1928)
	Some meta-notation
	Datatype representation
	What can we compute?
	What will interp do on infinite loops?
	What can we compute?
	What can we compute?
	What can we compute?
	What can we compute?
	What can we compute?
	That's what Alonzo Church proved in 1936

