
Generalizing your
Induction Hypothesis

Andrew Appel
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

1

A PROOF ABOUT TWO TREES
Image credit: pxfuel.com, licensed for free use 2

Reflection tester
type tree = Leaf of int | Node of tree * tree

1 2
3

12
3mirror = true

1 2
3mirror = false

3 2
1

3

Reflection tester
type tree = Leaf of int | Node of tree * tree

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> mirror b b' && mirror a a')

1 2
3

12
3mirror = true

1 2
3mirror = false

3 2
1

4

Examples

1 2
3

12
3

mirror foo bar = true mirror foo baz = false

3 2
1

let foo = Node(Node(Leaf 1, Leaf 2), Leaf 3)

let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

let baz = Node(Node(Leaf 3, Leaf 2), Leaf 1)

5

Claim!

1 2
3

12
3

3 2
1

foo bar baz

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

Examples:
mirror foo bar = true = mirror bar foo
mirror foo baz = false = mirror baz foo

6

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
==

== mirror bar t

• • • (we hope)

7

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false

== mirror bar t

• • • (we hope)

8

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false

== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t

• • • (we hope)

9

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false
== false
== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t

Done with this case!
10

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' && mirror a a')

Where a and b satisfy I.H.,
mirror a bar = mirror bar a
mirror b bar = mirror bar b

11

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' && mirror a a')12

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' && mirror a a')13

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

• • • (we hope)

14

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3)

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

• • • (we hope)

15

Proof attempt 1

12
3

Theorem: Ɐ t:tree. mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3)

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

16

FAIL!

12
3

Theorem: Ɐ t:tree, mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3)

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

Induction hyp tells us:
mirror a bar = mirror bar a
mirror b bar = mirror bar b

17

What’s the problem?

18

What’s the problem?

bar

19

Solution: prove a more general theorem!

12
3

Theorem: Ɐ t:tree, mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

20

Proof!

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t

21

Proof!

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume an arbitrary u about which we know nothing (except its type, “tree”)

22

Proof!

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Need to prove: mirror t u = mirror u t

23

Proof!

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u

== mirror u t

• • •

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

24

Proof!

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

25

Now, need case analysis on u

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

26

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

27

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)

== mirror u t

• • •

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

28

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)

== mirror (Leaf j) (Leaf i)
== mirror u t

•••

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

29

First subcase done

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)
== (j=i)
== mirror (Leaf j) (Leaf i)
== mirror u t

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

Done with Subcase (u=Leaf j).

30

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
==

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

31

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

32

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== mirror u t

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

• • •

33

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== mirror (Node(g,h) (Leaf i)
== mirror u t

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

• • •

34

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== false
== mirror (Node(g,h) (Leaf i)
== mirror u t

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

35

Case analysis on u: second subcase done.

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false
== mirror (Node(g,h) (Leaf i)
== mirror u t

Done with Subcase (u=Node(g,h)).
Done with Case (t=Leaf i).

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

36

Case analysis on t: second case

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

37

Case analysis on t: second case

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Need to prove: mirror t u = mirror u t

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

38

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf i.

mirror t u
==

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

39

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

40

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

41

Case analysis on u: first subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b)) let rec mirror t1 t2 =

match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

42

Case analysis on u: first subcase done.

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b))
== mirror u t

Done with Subcase (u=Leaf i).

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

43

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
==

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

44

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

45

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

46

Case analysis on u: second subcase

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h let rec mirror t1 t2 =

match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

47

What does the induction hypothesis tell us?

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h Induction hyp tells us:

Ɐ u:tree. mirror a u = mirror u a
and

Ɐ u:tree. mirror b u = mirror u b

Why? Because a and b are the immediate subtrees of t

48

What does the induction hypothesis tell us?

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h
== mirror b a && mirror b h

Induction hyp tells us:
Ɐ u:tree. mirror a u = mirror u a

and
Ɐ u:tree. mirror b u = mirror u b

49

What does the induction hypothesis tell us?

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h
== mirror b a && mirror b h
== mirror b a && mirror h b

Induction hyp tells us:
Ɐ u:tree. mirror a u = mirror u a

and
Ɐ u:tree. mirror b u = mirror u b

50

Finishing the proof

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

51

Finishing the proof.

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror u t

Done with Subcase (u=Node(g,h)),
Done with Case (t=Node(a,b)

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

52

Finishing the proof.

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror u t

Done with Subcase (u=Node(g,h)),
Done with Case (t=Node(a,b)
QED

let rec mirror t1 t2 =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') ->

mirror b b' &&
mirror a a')

53

Summary of the proof

Theorem: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u == . . . == mirror u t
Subcase: u = Node(g,h)

mirror t u == . . . == mirror u t
Case: t = Node(a,b)

Need to prove: Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u == . . . == mirror u t
Subcase: u = Node(g,h)

mirror t u == . . . == mirror u t
QED 54

Our original proof goal

Theorem 1: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof . . . QED

Theorem 2: Ɐ t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.

55

Our original proof goal

Theorem 1: Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof . . . QED

Theorem 2: Ɐ t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.
Apply Theorem 1, instantiating variable t with t, instantiating u with bar.

QED.

56

WHEN PROVING BY INDUCTION,
SOMETIMES YOU MUST
GENERALIZE THE THEOREM

(OR ELSE THE INDUCTION HYPOTHESIS WON’T FIT)

Moral of the story:

57

Another example
let rec same (i: int) (j: int) : bool =
if i=0 then j=0
else j>0 && same (i-1) (j-1)

Claim: Ɐ x:nat. same x 3 = same 3 x
Remark: x:nat means that x≥0

Examples:
same 3 3 = true = same 3 3
same 4 3 = false = same 3 4

58

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x

59

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
==

== same 3 x

• • •

60

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …

== same 3 x

• • •

61

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false

== same 3 x

• • •

62

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false

== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
== same 3 x

• • •

63

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false
== false && same (3-1) (0-1)
== 0>0 && same (3-1) (0-1)
== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
== same 3 x

Done with Case: x=0.
64

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat

same x 3
== same (a+1) 3

== same 3 x

• • •

Where a satisfies I.H.,
same a 3 = same 3 a

65

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)

== same 3 x

• • •

66

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 3 x

• • •

67

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 2 a
== a+1>0 && same 2 a
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
== same 3 x

•••

68

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 2 a
== a+1>0 && same 2 a
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
== same 3 x

••• Induction hyp tells us:
same a 3 = same 3 a

69

What’s the problem?

3x

x-1
x-2
x-3

70

What’s the problem?

yx

x-1
x-2
x-3

y-1
y-2
y-3

71

Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem 3: Ɐ x:nat. same x three = same three x

First, prove a more general theorem:

Theorem 4: Ɐ x:nat. Ɐ y:nat. same x y = same y x

72

Exercise
• Finish the proof yourself!

It looks just like the proof about
Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

73

WALK DOWN BOTH TREES TOGETHER,
IN YOUR PROOF;

DON’T STAY AT THE ROOT OF ONE OF THE TREES.

Conclusion:

74

How OCaml is compiled
to a von Neumann machine

Speaker: Andrew Appel
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

75

Two models for OCaml

e1 --> v1 e2 --> v2 eval_op (v1, op, v2) == v
e1 op e2 --> v

i ϵ Ζ
i --> i

e1 --> v1 e2 [v1/x] --> v2
let x = e1 in e2 --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2 e[v2/x] --> v
e1 e2 --> v

e1 --> rec f x = e e2 --> v2 e[rec f x = e/f][v2/x] --> v3
e1 e2 --> v3

76

let rec eval (e:exp) : exp =
match e with
| Int_e i -> Int_e i
| Op_e(e1,op,e2) ->

eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) ->

eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)
| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) ->

(match eval e1
| Fun_e (x,e) ->

eval (Let_e (x,e2,e))
| _ -> raise TypeError)

| LetRec_e (x,e1,e2) ->
(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f

(substitute v x e)

Interpreter Operational semantics

Another model of computation

77

com·put·er
/kəmˈpyo͞odər/
noun
1. an electronic device for storing and
processing data, typically in binary form,
according to instructions given to it in a
variable program.

https://www.google.com/search?q=how+to+pronounce+computer&stick=H4sIAAAAAAAAAOMIfcRoxS3w8sc9YSnDSWtOXmPU5uINKMrPK81LzkwsyczPExLhYglJLcoV4pHi4uJIzs8tKC1JLbJiUWJKzeNZxCqZkV-uUJKvUADUkw_UlKoAUwIAbeK-EFsAAAA&pron_lang=en&pron_country=us&sa=X&ved=2ahUKEwiFjcSQ25XrAhVBzlkKHUPOBtkQ3eEDMAB6BAgDEAg
https://www.google.com/search?q=how+to+pronounce+computer&stick=H4sIAAAAAAAAAOMIfcRoxS3w8sc9YSnDSWtOXmPU5uINKMrPK81LzkwsyczPExLhYglJLcoV4pHi4uJIzs8tKC1JLbJiUWJKzeNZxCqZkV-uUJKvUADUkw_UlKoAUwIAbeK-EFsAAAA&pron_lang=en&pron_country=us&sa=X&ved=2ahUKEwiFjcSQ25XrAhVBzlkKHUPOBtkQ3eEDMAB6BAgDEAg

John Von Neumann (1903-1957)
• Scientific achievements

– Stored program computers
– Cellular automata
– Inventor of game theory
– Nuclear physics

• Princeton Univ. & Princeton I.A.S. 1930-1957
• Known for “Von Neumann architecture” (1950)

– In which programs are just data in the memory

78 78

Von Neumann Architecture

79 79

RAM

Control
Unit

CPU

Registers

Data bus

ALU

Instructions are
fetched from RAM

So is data

How OCaml is compiled to machine language

• Variables
• Integers
• Constant constructors
• Value-carrying constructors
• Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

80

type t =
A | B

| C of int | D of t*t

Variables

81

Variables are kept in registers,
just as in the translation of C programs
to assembly language

OCaml

let x = 3 in …

Assembly language

move 3, r2

When you do a function call, variables whose values will still be needed
after the call, will be stored into the stack frame, just as in the translation
of C programs to assembly language

If you have more active variables in your function than your machine has
registers, some variables will be kept in the stack frame instead of registers,
j.a.i.t.t.o.C.p.t.a.l

Integers

82

OCaml

let x = 3 in …

Assembly language

move 7, r2

The garbage collector needs to distinguish
integers from pointers. OCaml does that
by using the last bit of the word:
(Word-aligned) pointers end in 00 (binary)
Integers end in 1 (binary)

So, integer N is really stored as 2N+1

And, on a 64-bit-word machine, you really only get 63-bit integers

There was a little fib on the previous slide

Constant constructors

83

type t =
A | B

| C of int | D of t*t

A is represented as 1 (the first odd number)
B is represented as 3 (the second odd number)

This is similar to how C programs represent NULL as 0

Value-carrying constructors

84

type t =
A | B

| C of int | D of t*t

This is similar to how C programs represent malloc’ed struct-pointers

OCaml

let p = C 3 in
let q = D p p in …

7p
1 0 header

data word(s)

q
2 1

Not malloc/free !
• You may be familiar with how C’s malloc/free system works
• Malloc is somewhat expensive:

– function call
– find right-size block in data structure
– update data structure, initialize header and footer

• Free is somewhat expensive:
– function call
– update data structure
– test for coalescing (?)

• OCaml (and other functional languages) have a different
system

85

base

alloc

limit

Nursery Older generation
(much larger)

The heap and the nursery

86

Machine
registers
(and stack)

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

87

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

en
ou

gh
 sp

ac
e?

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

88

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

89

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

90

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

91

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add r5+1 → r3

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

92

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add r5+1 → r3
add r5+3 → r5

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

How to allocate a constructed value

93

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add r5+1 → r3
add r5+3 → r5

let q = D p p in …

type t =
A | B

| C of int | D of t*t

test for space available
store the header word
store first field
store second field
assign the result (q)
adjust the “alloc” pointer

initialize the fields

2 instructions

2 instructions

WHEN THE NURSERY FILLS UP . . .

GARBAGE COLLECTION!

What happens

94

base

alloc
limit

Nursery Older generation
(much larger)

The nursery is full

95

Machine
registers
(and stack)

r1
r2

r6
r5

limit
alloc

2 1

base

alloc
limit

Nursery Older generation
(much larger)

96

Machine
registers
(and stack)

r1
r2

r6
r5

2 1

Only these records are reachable

base

alloc
limit

Nursery Older generation
(much larger)

97

Machine
registers
(and stack)

r1
r2

r6
r5

2 1

Move reachable records to older generation

(by breadth-first search)

base
alloc

limit

Nursery Older generation
(much larger)

98

Machine
registers
(and stack)

r1
r2

r6
r5

2 1

Reset “alloc” pointer of Nursery

How OCaml is compiled to machine language

 Variables
 Integers
 Constant constructors
 Value-carrying constructors
• Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

99

type t =
A | B

| C of int | D of t*t

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp4 i j

100

type t =
A | B

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if r3=0 goto Boxed
handle cases A,B
goto Done
Boxed:
handle cases C,D
Done:

First, test whether the constructed
value is “unboxed” (constant constructor)
or “boxed” (value-carrying constructor)

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp4 i j

101

type t =
A | B

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if r3=0 goto Boxed
(if r2=1 then exp1 else exp2)
goto Done
Boxed:
handle cases C,D
Done:

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp4 i j

102

type t =
A | B

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if r3=0 goto Boxed
handle cases A,B
goto Done
Boxed:
load r2[-1] → r3
andb 127,r3 → r3
(if r3=0 then C else D)

Done:

7c
1 0 header

d
2 1

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp i j

103

type t =
A | B

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

D case:
load r2[0] → r4
load r2[1] → r5

7c
1 0 header

d
2 1

(fetch i)
(fetch j)

Summary of Pattern-matching

match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D (i,j) -> exp4 i j

104

Conditional branches
(or switch-statement) Memory loads

How OCaml is compiled to machine language

 Variables
 Integers
 Constant constructors
 Value-carrying constructors
 Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

105

let x = y + z in …

Almost as simple as,

106

let x = y + z in …
Machine
registers
(and stack)

r1
r2

yr3

z

Assembly language

add r3+r1 → r4

But remember, in order to make integers distinguishable from pointers,
OCaml represents integers with low-order-bit 1,
which is to say, r3=2y+1 r1=2z+1
and we need to compute r4=2(y+z)+1

Assembly language

add r3+r1 → r4
sub r4-1 → r4

Function definitions

More or less, a function is translated as a
label in assembly language, which stands for
an address in machine language,
where some machine instructions implement the function:

But there is one important difference
from the way C functions are compiled!

107

fun x -> x+1

Assembly language
f:
add r0+2 → r0
ret

Function definitions

Free variables! (in this case, x and y)

108

(fun w -> x+w+y)

Assembly language
f:

um, how do I know the values of x and y?

ret

Function definitions

Free variables! (in this case, x and y)

109

(fun w -> x+w+y)

Assembly language
f_code:

get x and y from environment-pointer

ret

x
y

code
environment

“closure”

Function definitions

110

(fun w -> x+w+y)

code
env

x
y

base

alloc

limit

Nursery Older generation

Evaluating “fun … -> …”

is like constructing two
records on the heap

. . .

and will be garbage-collected
when no longer in use

Function call

111

let y = f(x) in …
Assembly language
f_code:

get free vars from env

ret

code
env

f

Assembly language

push saved locals on stack
move x → r1 # arg
load f[1] → r2 # env
load f[0] → r3 # code
call r3
pop saved locals from stack

Tail call

112

f(x)
Assembly language
f_code:

get free vars from env

ret

code
env

f

Assembly language

move x → r1 # arg
load f[1] → r2 # env
load f[0] → r3 # code
jmp r3

Conclusion
• Each feature of the OCaml language is implemented in a few

instructions of machine language

• Some of these features work just like their counterparts in C,

• What’s different:
– garbage collection, instead of malloc/free
– function closures
– distinguishing integers from pointers, by low-order bit

113

	Generalizing your� Induction Hypothesis
	A Proof about two trees
	Reflection tester
	Reflection tester
	Examples
	Claim!
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	Proof attempt 1
	FAIL!
	What’s the problem?
	What’s the problem?
	Solution: prove a more general theorem!
	Proof!
	Proof!
	Proof!
	Proof!
	Proof!
	Now, need case analysis on u
	Case analysis on u: first subcase
	Case analysis on u: first subcase
	Case analysis on u: first subcase
	First subcase done
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	Case analysis on u: second subcase done.
	Case analysis on t: second case
	Case analysis on t: second case
	Case analysis on u: first subcase
	Case analysis on u: first subcase
	Case analysis on u: first subcase
	Case analysis on u: first subcase
	Case analysis on u: first subcase done.
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	Case analysis on u: second subcase
	What does the induction hypothesis tell us?
	What does the induction hypothesis tell us?
	What does the induction hypothesis tell us?
	Finishing the proof
	Finishing the proof.
	Finishing the proof.
	Summary of the proof
	Our original proof goal
	Our original proof goal
	When proving by induction,�sometimes you must�generalize the theorem��(or else the induction hypothesis won’t fit)
	Another example
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	Now prove this!
	What’s the problem?
	What’s the problem?
	Now prove this!
	Exercise
	Walk down both trees together, in your proof;��don’t stay at the root of one of the trees.�
	How OCaml is compiled�to a von Neumann machine
	Two models for OCaml
	Another model of computation
	John Von Neumann (1903-1957)
	Von Neumann Architecture
	How OCaml is compiled to machine language
	Variables
	Integers
	Constant constructors
	Value-carrying constructors
	Not malloc/free !
	The heap and the nursery
	How to allocate a constructed value
	How to allocate a constructed value
	How to allocate a constructed value
	How to allocate a constructed value
	How to allocate a constructed value
	How to allocate a constructed value
	How to allocate a constructed value
	When the nursery fills up . . .��Garbage collection!
	The nursery is full
	Only these records are reachable
	Move reachable records to older generation
	Reset “alloc” pointer of Nursery
	How OCaml is compiled to machine language
	Pattern-matching
	Pattern-matching
	Pattern-matching
	Pattern-matching
	Summary of Pattern-matching
	How OCaml is compiled to machine language
	let x = y + z in …
	Function definitions
	Function definitions
	Function definitions
	Function definitions
	Function call
	Tail call
	Conclusion

