Generalizing your Induction Hypothesis

Andrew Appel

COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Wı Appel permission granted to reuse these slides for non-commercial educational purposes

A PROOF ABOUT TWO TREES

Reflection tester

type tree $=$ Leaf of int | Node of tree * tree

Reflection tester

type tree = Leaf of int | Node of tree * tree

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leafi-> (match t2 with
| Leaf j -> i=j
Node(_,_) -> false)
Node(a,b) -> (match t2 with
| Leaf_-> false
| Node (b', a') -> mirror b b' \&\& mirror a a')
mirror

Examples

mirror foo bar $=$ true

```
mirror foo baz = false
```


Claim!

Theorem: \forall t:tree. mirror t bar = mirror bar t

Examples:
mirror foo bar = true = mirror bar foo mirror foo baz = false = mirror baz foo

Proof attempt 1

type tree = Leaf of int | Node of tree * tree let bar $=$ Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem: $\forall \mathrm{t}$:tree. mirror t bar = mirror bar t
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
mirror t bar
==

- (we hope)
== mirror bar t

Proof attempt 1

type tree = Leaf of int | Node of tree * tree

 let bar $=$ Node(Leaf 3, Node(Leaf 2, Leaf 1))Theorem: \forall t:tree. mirror t bar = mirror bar t
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j-> $\mathrm{i}=\mathrm{j} \mid$ Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j-> i=j| Node(_,_) -> false
== false

- (we hope)
== mirror bar t

Proof attempt 1

type tree = Leaf of int | Node of tree * tree

 let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))Theorem: $\forall \mathrm{t}$:tree. mirror t bar = mirror bar t

Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j| Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf $j->i=j \mid$ Node(_,_) -> false
== false

- (we hope)
== mirror $(\operatorname{Node(Leaf~3,Node(Leaf~2,~Leaf~1)))~(Leaf~i)~}$
$==$ mirror bar t

Proof attempt 1

type tree = Leaf of int | Node of tree * tree

 let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))Theorem: $\forall \mathrm{t}$:tree. mirror t bar = mirror bar t

Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j-> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j| Node(_,_) -> false
== false
== false
== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t
Done with this case!

Proof attempt 1

type tree = Leaf of int | Node of tree * tree

 let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))Theorem: \forall t:tree. mirror t bar = mirror bar t

Case: $\mathrm{t}=\mathrm{Node}(\mathrm{a}, \mathrm{b})$

mirror t bar

== mirror (Node (a,b)) bar

Where a and b satisfy I.H., mirror a bar = mirror bar a mirror b bar = mirror bar b

- (we hope)
$==$ mirror bar t

```
let rec mirror (t1: tree) (t2: tree) : bool =
    match t1 with
    | Leaf i -> (match t2 with
    | Leaf j -> i=j
    | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf _-> false
        | Node (b',a') ->
        mirror b b' && mirror a a')
```


Proof attempt 1

type tree = Leaf of int | Node of tree * tree

 let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))Theorem: $\forall \mathrm{t}$:tree. mirror t bar = mirror bar t
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
mirror t bar
$==$ mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b', a') -> mirror b b' \&\& mirror a a'
: (we hope)
$==$ mirror bar t

```
let rec mirror (t1: tree) (t2: tree) : bool =
    match t1 with
    | Leaf i -> (match t2 with
    | Leaf j -> i=j
    | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf _-> false
        | Node (b',a') ->
        mirror b b' && mirror a a')
```


Proof attempt 1

type tree = Leaf of int | Node of tree * tree let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem: $\forall \mathrm{t}$:tree. mirror t bar = mirror bar t
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
mirror t bar
$==$ mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b', a') -> mirror b b' \&\& mirror a a'
== mirror b (Leaf 3) \&\& mirror a (Node(Leaf 2, Leaf 1))

```
let rec mirror (t1: tree) (t2: tree) : bool =
    match t1 with
    | Leaf i -> (match t2 with
    | Leaf j -> i=j
    | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf _-> false
        | Node (b',a') ->
        mirror b b' && mirror a a')
```


Proof attempt 1

type tree = Leaf of int | Node of tree * tree

 let bar $=\operatorname{Node(Leaf~3,~Node(Leaf~2,~Leaf~1))~}$

Theorem: \forall t:tree. mirror t bar = mirror bar t
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
mirror t bar
$==$ mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b', a') -> mirror b b' \& \& mirror a a'
$==$ mirror b (Leaf 3) \&\& mirror a (Node(Leaf 2, Leaf 1))
: (we hope)
== mirror (Node(Leaf 2, Leaf 1)) a \&\& mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
    | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
                                    | Leaf _-> false
                                    | Node (b',a') ->
                                    mirror b b' &&
                                    mirror a a')
```


Proof attempt 1

type tree $=$ Leaf of int | Node of tree * tree let bar $=$ Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem: \forall t:tree. mirror t bar = mirror bar t
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
mirror t bar
$==$ mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b', a^{\prime}) -> mirror b b' \& \& mirror a a'
== mirror b (Leaf 3) \&\& mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) \&\& mirror b (Leaf 3)
: (we hope)
== mirror (Node(Leaf 2, Leaf 1)) a \&\& mirror (Leaf 3) b
$==$ mirror (Node(Leaf 3, $\operatorname{Node(_ ,_)))~(Node(a,b))~}$
== mirror bar t

Proof attempt 1

type tree $=$ Leaf of int | Node of tree * tree let bar $=\operatorname{Node(Leaf~3,~Node(Leaf~2,~Leaf~1))~}$

Theorem: $\forall \mathrm{t}$:tree. mirror t bar = mirror bar t
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
mirror tbar
== mirror (Node (a,b)) bar
$==$ match bar with Leaf _ -> false | Node(b', a') -> mirror b b' \&\& mirror a a'
$==$ mirror b (Leaf 3) \&\& mirror a (Node(Leaf 2, Leaf 1))
$==$ mirror a (Node(Leaf 2, Leaf 1)) \&\& mirror b (Leaf 3)
$==$ mirror (Node(Leaf 2, Leaf 1)) a \& \& mirror (Leaf 3) b
$==$ mirror (Node(Leaf 3, $\operatorname{Node(_ ,_)))~(Node(a,b))~}$
$==$ mirror bar t
type tree $=$ Leaf of int | Node of tree * tree let bar $=$ Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem: \forall t:tree, mirror t bar = mirror bar t
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
mirror tbar
== mirror (Node (a,b)) bar
$==$ match bar with Leaf _ -> false | Node(b', a^{\prime}) -> mirror b b' \&\& mirror a a'
$==$ mirror b (Leaf 3) \&\& mirror a (Node(Leaf 2, Leaf 1))
$==$ mirror a (Node(Leaf 2, Leaf 1)) \&\& mirror b (Leaf 3)
Induction hyp tells us:
mirror a bar = mirror bar a mirror b bar = mirror bar b
$==$ mirror (Node(Leaf 2, Leaf 1)) a \& \& mirror (Leaf 3)b
$==$ mirror (Node(Leaf 3, $\operatorname{Node(_ ,_)))(Node(a,b))~}$
$==$ mirror bar t

What's the problem?

What's the problem?

Solution: prove a more general theorem!

type tree = Leaf of int | Node of tree * tree let bar $=\operatorname{Node}($ Leaf 3, Node(Leaf 2, Leaf 1))

Theorem: $\forall \mathrm{t}$:tree, mirror t bar $=$ mirror bar t

Theorem: $\quad \forall$ t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$

Proof!

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{tu}=$ mirror $\mathrm{u} t$
Proof:
By induction on t .

Case: $\mathrm{t}=$ Leaf i

Need to prove: \forall u:tree. mirror $\mathrm{tu}=$ mirror $\mathrm{u} t$

Proof!

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror $\mathrm{u} t$
Proof:
By induction on t.

Case: $\mathrm{t}=$ Leaf i

Need to prove: \forall u:tree. mirror $\mathrm{t}=$ mirror ut
Assume an arbitrary u about which we know nothing (except its type, "tree")

Proof!

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror ut
Proof:
By induction on t.

Case: $\mathrm{t}=$ Leaf i

Need to prove: \forall u:tree. mirror tu=mirror ut
Assume u: tree.
Need to prove: mirror tu= mirror ut

Proof!

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut

```
Proof:
By induction on t.
Case: t = Leaf i
    Need to prove: }\forall\mathrm{ u:tree. mirror t u = mirror u t
    Assume u: tree.
        mirror t u
    == mirror (Leaf i) u
    == mirror u t
```

```
let rec mirrort1 t2 =
```

let rec mirrort1 t2 =
match t1 with
match t1 with
| Leaf i -> (match t2 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Leaf j -> i=j
| Node(_,_) -> false)
| Node(_,_) -> false)
| Node(a,b) -> (match t2 with
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Leaf _-> false
| Node (b',a') ->
| Node (b',a') ->
mirror b b4
mirror b b4
mirror a a')

```
        mirror a a')
```


Proof!

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut

Proof:

By induction on t.

Case: $\mathrm{t}=$ Leaf i

Need to prove: \forall u:tree. mirror tu = mirror ut
Assume u: tree. mirror tu
$==$ mirror (Leaf i) u
== match u with Leaf j-> i=j | Node(_,_) -> false
let rec mirrort1t2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_,_) -> false)
| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b', a') ->
mirror b_{25} \&\&
mirror a a')

Now, need case analysis on u

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.

Case: $\mathrm{t}=$ Leaf i

Need to prove: \forall u:tree. mirror $\mathrm{t} u=$ mirror ut
Assume u: tree. mirror t u
$==$ mirror (Leaf i) u
$==$ match U with Leaf $j->i=j \mid$ Node(_,_) $->$ false
let rec mirrort1t2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j-> i=j
| Node(_,_) -> false)
| Node(a,b) -> (match t2 with
| Leaf_ _> false
| Node (b', a') ->
mirror $\mathrm{b}_{26}^{\prime} \& \&$ mirror a a')

Case analysis on u: first subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.

Case: $\mathrm{t}=$ Leaf i

Need to prove: \forall u:tree. mirror t u = mirror ut
Assume u: tree.
Subcase: u = Leaf j
mirror tu
$==$ mirror (Leaf i) u
== match u with Leaf $j->i=j \mid \operatorname{Node(_ ,_)~->~false~}$
== mirror ut

Case analysis on u: first subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut

```
Proof:
By induction on t.
Case: t = Leaf i
    Need to prove: \forall u:tree. mirror t u = mirror u t
    Assume u: tree.
    Subcase: u = Leaf j
        mirror t u
    == mirror (Leaf i) u
    == match u with Leaf j -> i=j | Node(_,_) -> false
    == (i=j)
        \bullet
        -
    == mirror u t
```

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
    | Node (b',a') ->
        mirror b b/ &&&
        mirror a a')
```


Case analysis on u: first subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.

```
Case: t = Leaf i
    Need to prove: \forall u:tree. mirror t u = mirror u t
    Assume u: tree.
    Subcase: u = Leaf j
        mirror t u
    == mirror (Leaf i) u
    == match u with Leaf j -> i=j | Node(_,_) -> false
    == (i=j)
    == mirror (Leaf j) (Leaf i)
    == mirror u t
```

```
let rec mirrort1 t2 =
```

 match \(\mathrm{t1}\) with
 | Leaf i -> (match t2 with
 | Leaf j -> i=j
 | Node(_,_) -> false)
 | Node(a,b) -> (match t2 with
 | Leaf_-> false
 | Node (b', a') ->
 mirror \(b_{29}^{\prime}\) \&\&
 mirror a a')

First subcase done

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror $\mathrm{tu}=$ mirror ut
Assume u: tree.
Subcase: u = Leaf j
mirror tu
== mirror (Leaf i) u
== match u with Leaf j-> i=j | Node(_,_) -> false
$=(\mathrm{i}=\mathrm{j})$
$==(j=i)$
== mirror (Leaf j) (Leaf i)
== mirror ut
Done with Subcase (u=Leaf j).

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
                                    | Leaf _-> false
                                    | Node (b',a') ->
                                    mirror b bo' &&
                                    mirror a a')
```


Case analysis on u: second subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror tu=mirror ut Assume u: tree.
Subcase: u = Node(g,h)
mirror tu
==
let rec mirrort1 t2 =
match $\mathrm{t1}$ with
| Leaf i -> (match t 2 with
| Leaf j-> i=j
| Node(_,_) -> false)
| Node(a,b) -> (match t2 with
| Leaf_ -> false
| Node (b',a') ->
mirror $\mathrm{b}_{31} \mathrm{~b}_{1}$ \&
mirror a a')

Case analysis on u: second subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t .
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror tu = mirror ut
Assume u: tree.
Subcase: u = Node(g,h)
mirror t u
$==$ mirror (Leaf i) (Node(g,h))

```
let rec mirrort1t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ _> false
        | Node (b',a') ->
        mirror b b2' &&
        mirror a a')
```


Case analysis on u: second subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror $\mathrm{tu}=$ mirror ut
Assume u: tree.
Subcase: u = Node(g,h)
mirror tu
== mirror (Leaf i) (Node(g,h))
== false
$==$ mirror $u t$

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b3' &&
        mirror a a')
```


Case analysis on u: second subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror tu=mirror ut
Assume u: tree.
Subcase: u = Node(g,h)
mirror tu
== mirror (Leaf i) (Node(g,h))
== false
-
\bullet
-
== mirror (Node(g,h) (Leaf i)
== mirror ut

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf _-> false
        | Node (b',a') ->
        mirror b b4' &&
        mirror a a')
```


Case analysis on u: second subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror tu= mirror ut Assume u: tree.
Subcase: u = Node(g,h)
mirrort u
== mirror (Leafi) (Node(g,h))
== false
== false
== mirror (Node(g,h) (Leaf i)
== mirror ut

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf _-> false
    | Node (b',a') ->
        mirror b bh' &&
        mirror a a')
```


Case analysis on u: second subcase done.

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror u t
Proof:
By induction on t .
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror tu=mirror ut Assume u: tree.
Subcase: u = Node(g,h)
mirror tu
== mirror (Leaf i) (Node(g,h))
== false
$==$ mirror (Node(g,h) (Leaf i)
== mirror ut
Done with Subcase (u=Node(g,h)).
Done with Case ($\mathrm{t}=$ Leaf i).

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
    | Node (b',a') ->
        mirror b bb' &&
        mirror a a')
```


Case analysis on t : second case

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu = mirror ut

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b' &&
        mirror a a')
```


Case analysis on t : second case

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu=mirror ut Assume u: tree.
Need to prove: mirror tu=mirror ut

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b/ &&
        mirror a a')
```


Case analysis on u: first subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu=mirror ut
Assume u: tree.
Subcase: $u=$ Leaf i.
mirror tu
==
let rec mirrort1 t2 =
match t1 with
| Leaf i -> (match t 2 with
| Leaf j-> i=j
| Node(_,_) -> false)
| Node(a,b) -> (match t2 with
| Leaf_ -> false
| Node (b', a') ->
mirror $\mathrm{b}_{39} \mathrm{~b}^{\prime}$ \& \&
mirror a a')

Case analysis on u: first subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t .
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror t u = mirror ut Assume u: tree.
Subcase: $u=$ Leaf i.
mirror tu
$==$ mirror $(\operatorname{Node}(\mathrm{a}, \mathrm{b}))($ Leaf i$)$

```
let rec mirrort1t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ _> false
        | Node (b',a') ->
        mirror b b' &&
        mirror a a')
```


Case analysis on u: first subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror t u = mirror ut Assume u: tree.
Subcase: $u=$ Leaf i.
mirrort u
$==$ mirror $(\operatorname{Node}(\mathrm{a}, \mathrm{b}))($ Leaf i$)$
== false

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ _> false
        | Node (b',a') ->
        mirror b b' &&
        mirror a a')
```


Case analysis on u: first subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror t u = mirror ut Assume u: tree.
Subcase: $u=$ Leaf i.
mirrort u
$==$ mirror $(\operatorname{Node}(\mathrm{a}, \mathrm{b}))($ Leaf i$)$
== false
$==$ mirror (Leaf i) (Node(a,b))

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b'&&
        mirror a a')
```


Case analysis on u: first subcase done.

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror t u = mirror ut
Assume u: tree.
Subcase: $u=$ Leaf i.
mirrort u
$==$ mirror (Node(a,b)) (Leaf i)
== false
$==$ mirror (Leaf i) $(\operatorname{Node}(\mathrm{a}, \mathrm{b}))$
== mirror ut
Done with Subcase (u=Leaf i).

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b b
        mirror a a')
```


Case analysis on u: second subcase

Theorem: \forall t:tree. \forall u:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu=mirror ut Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrortu
=

```
let rec mirrort1t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b b4&
        mirror a a')
```


Case analysis on u: second subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu=mirror ut Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirror tu
$==\operatorname{mirror}(\operatorname{Node}(\mathrm{a}, \mathrm{b}))(\operatorname{Node}(\mathrm{g}, \mathrm{h}))$

```
let rec mirrort1t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b' &&
        mirror a a')
```


Case analysis on u: second subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu= mirror ut
Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==\operatorname{mirror}(\operatorname{Node}(\mathrm{a}, \mathrm{b}))(\operatorname{Node}(\mathrm{g}, \mathrm{h}))$
== mirror b h \& \& mirror ag

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b' &&
        mirror a a')
```


Case analysis on u: second subcase

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu=mirror ut
Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==$ mirror (Node(a,b)) (Node(g,h))
== mirror b h \&\& mirror ag
$==$ mirror ab \& \& mirror b h

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
        | Node (b',a') ->
        mirror b b' &&
        mirror a a')
```


What does the induction hypothesis tell us?

Theorem: $\quad \forall$ t:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} u=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror $\mathrm{u} t$
Assume u: tree.
Subcase: $u=\operatorname{Node}(g, h)$.
mirror tu
$==\operatorname{mirror}(\operatorname{Node}(a, b))(\operatorname{Node}(g, h))$
== mirror b h \& \& mirror ag
$==$ mirror $a b \& \&$ mirror $b h$

```
Induction hyp tells us:
\forall u:tree. mirror a u = mirror u a
    and
    \forall u:tree. mirror b u = mirror u b
```

Why? Because a and b are the immediate subtrees of t

What does the induction hypothesis tell us?

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror t u = mirror ut
Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==$ mirror ($\operatorname{Node}(\mathrm{a}, \mathrm{b}))(\operatorname{Node}(\mathrm{g}, \mathrm{h}))$
$==$ mirror b h \& \& mirror a g
$=\neq$ mirror $a b \& \&$ mirror $b h$
$=$ mirror b a\&\& mirror b h

Induction hyptells us.
\forall u:tree. mirror a u = mirror ua
and
\forall u:tree. mirror $\mathrm{b} u=$ mirror $\mathrm{u} b$

What does the induction hypothesis tell us?

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t .
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu=mirror ut
Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==$ mirror ($\operatorname{Node}(\mathrm{a}, \mathrm{b}))(\operatorname{Node}(\mathrm{g}, \mathrm{h}))$
== mirror b h \& \& mirror ag
$==$ mirror $a b \& \&$ mirror $b h$
$==$ mirror $\mathrm{b} \mathrm{a} \& \&$ mirror b h $==$ mirror b a \&\&mirror $h b$

Induction hyp tells us:
\forall u:tree. mirror a u = mirror u a and
\forall u:tree. mirror b u = mirror ub

Finishing the proof

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu = mirror ut
Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==\operatorname{mirror}(\operatorname{Node}(\mathrm{a}, \mathrm{b}))(\operatorname{Node}(\mathrm{g}, \mathrm{h}))$
$==$ mirror b h \& \& mirror ag
$==$ mirror ag \&\& mirror b h
$==$ mirror g a \&\& mirror b h
$==$ mirror g a \&\& mirror h b
== mirror (Node(g,h)) (Node(a,b))

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
        | Leaf_ -> false
    | Node (b',a') ->
    mirror b b' &&
    mirror a a')
```


Finishing the proof.

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror $\mathrm{u} t$
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu= mirror ut Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==$ mirror (Node(a,b)) (Node(g,h))
$==$ mirror b h \& \& mirror ag
$==$ mirror ag \&\& mirror b h
$==$ mirror g a \&\& mirror b h
$==$ mirror g a \&\& mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror ut
Done with Subcase (u=Node(g,h)),
Done with Case ($\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b}$)

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
                            | Leaf_ _> false
    | Node (b',a') ->
    mirror b b' &&
    mirror a a')
```


Finishing the proof.

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t.
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror tu= mirror ut
Assume u: tree.
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$.
mirrort u
$==$ mirror (Node(a,b)) (Node(g,h))
$==$ mirror b h \& \& mirror ag
$==$ mirror ag \&\& mirror b h
$==$ mirror g a \&\& mirror b h
$==$ mirror g a \&\& mirror h b
$==$ mirror (Node(g,h)) (Node(a,b))
== mirror ut
Done with Subcase ($u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$),
Done with Case ($\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b}$)

```
let rec mirrort1 t2 =
    match t1 with
    | Leaf i -> (match t2 with
        | Leaf j -> i=j
        | Node(_,_) -> false)
    | Node(a,b) -> (match t2 with
                            | Leaf_ -> false
    | Node (b',a') ->
    mirror b b5' &&
    mirror a a')
```


Summary of the proof

Theorem: $\forall \mathrm{t}$:tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror ut
Proof:
By induction on t .
Case: $\mathrm{t}=$ Leaf i
Need to prove: \forall u:tree. mirror tu= mirror ut
Assume u: tree.
Subcase: $u=$ Leaf j
mirror $\mathrm{t} u==\ldots==$ mirror u t
Subcase: $u=\operatorname{Node}(g, h)$
mirror tu == . . $==$ mirror ut
Case: $\mathrm{t}=\operatorname{Node}(\mathrm{a}, \mathrm{b})$
Need to prove: \forall u:tree. mirror t u = mirror ut
Assume u: tree.
Subcase: $u=$ Leaf j
mirror $\mathrm{t} u==\ldots==$ mirror ut
Subcase: $u=\operatorname{Node}(\mathrm{g}, \mathrm{h})$
mirror $\mathrm{t} u==\ldots==$ mirror u t
QED

Our original proof goal

Theorem 1: $\quad \forall \mathrm{t}$ tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror u t Proof... QED

Theorem 2: \forall t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.
Must prove: mirror t bar = mirror bar t .

Our original proof goal

Theorem 1: $\quad \forall \mathrm{t}$ tree. $\forall \mathrm{u}$:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror u t Proof... QED

Theorem 2: \forall t:tree. mirror t bar $=$ mirror bar t
Proof.
Assume t:tree.
Must prove: mirror t bar = mirror bar t .
Apply Theorem 1, instantiating variable t with t , instantiating u with bar. QED.

Moral of the story:

WHEN PROVING BY INDUCTION, SOMETIMES YOU MUST GENERALIZE THE THEOREM

(OR ELSE THE INDUCTION HYPOTHESIS WON’T FIT)

Another example

let rec same (i: int) (j: int) : bool =
if $\mathrm{i}=0$ then $\mathrm{j}=0$ else j>0 \&\& same (i-1) (j-1)

Claim: $\forall \mathrm{x}$:nat. same $\mathrm{x} 3=$ same 3 x
Remark: x:nat means that $x \geq 0$
Examples:
same 33 = true = same 33
same 43 = false $=$ same 34

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall x$:nat. same $\times 3=$ same $3 x$

Now prove this!

let rec same ($\mathrm{i}: \mathrm{int}$) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall x$:nat. same $\times 3=$ same $3 x$
By induction on x.
Case: $\mathrm{x}=0$
same x 3
==
$==$ same 3 x

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\mathrm{x} 3=$ same 3 x
By induction on x.
Case: $\mathrm{x}=0$
same x 3
== same 03
== if $0=0$ then $3=0$ else ...
== same 3 x

Now prove this!

let rec same ($\mathrm{i}: \mathrm{int}$) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\times 3=$ same 3 x
By induction on x.
Case: $\mathrm{x}=0$
same x 3
== same 03
$==$ if $0=0$ then $3=0$ else ...
== $3=0$
== false
== same 3 x

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) $(\mathrm{j}-1$)

Theorem: \forall x:nat. same $\times 3=$ same $3 x$ By induction on x.
Case: $\mathrm{x}=0$
same x 3
== same 03
== if $0=0$ then $3=0$ else ...
$==3=0$
== false
$==$ if $3=0$ then $0=0$ else $0>0 \& \&$ same (3-1) (0-1)
== same 3 x

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\mathrm{x} 3=$ same 3 x By induction on x.
Case: $x=0$
same x 3
== same 03
== if $0=0$ then $3=0$ else ...
== $3=0$
== false
$==$ false \& \& same (3-1) (0-1)
$==0>0$ \&\& same (3-1) (0-1)
$==$ if $3=0$ then $0=0$ else $0>0 \& \&$ same (3-1) (0-1)
== same 3 x
Done with Case: $\mathrm{x}=0$.

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\times 3=$ same 3 x By induction on x.

Where a satisfies I.H., same a 3 = same 3 a

Case: $x=a+1$, where a nat
same x 3
$==$ same $(a+1) 3$
== same 3 x

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall x$:nat. same $\times 3=$ same $3 x$ By induction on x.
Case: $x=a+1$, where a:nat
same $x 3$
$==$ same $(a+1) 3$
$==$ if $(a+1)=0$ then $3=0$ else $3>0$ \&\& same $(a+1-1)(3-1)$
== same 3 x

Now prove this!

let rec same (i : int) ($\mathrm{j}: \mathrm{int}$) : bool $=$ if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\mathrm{x} 3=$ same 3 x
By induction on x.
Case: $x=a+1$, where a:nat
same x 3
$==$ same $(a+1) 3$
$==$ if $(a+1)=0$ then $3=0$ else $3>0$ \&\& same $(a+1-1)(3-1)$
$==3>0 \& \&$ same a 2
== same a 2
== same 3 x

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\mathrm{x} 3=$ same 3 x
By induction on x.
Case: $x=a+1$, where a :nat
same x 3
$==$ same $(a+1) 3$
$==$ if $(a+1)=0$ then $3=0$ else $3>0$ \&\& same $(a+1-1)(3-1)$
$==3>0 \& \&$ same a 2
== same a 2
== same 2 a
$==a+1>0$ \&\& same $2 a$
== if $3=0$ then $(a+1)=0$ else $a+1>0$ \&\& same (3-1) $(a+1-1)$
== same 3 x

Now prove this!

let rec same (i : int) ($\mathrm{j}: \mathrm{int}$) : bool $=$ if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem: $\forall \mathrm{x}$:nat. same $\mathrm{x} 3=$ same 3 x
By induction on x.
Case: $x=a+1$, where a:nat
same x 3
$==$ same $(a+1) 3$
$==$ if $(a+1)=0$ then $3=0$ else $3>0$ \&\& same $(a+1-1)(3-1)$
$==3>0$ \& \& same a 2
$==$ same a 2

Induction hyp tells us:

same a 3 = same 3 a
== same 2 a
$==a+1>0$ \& \& same $2 a$
$==$ if $3=0$ then $(a+1)=0$ else $a+1>0$ \&\& same (3-1) $(a+1-1)$
== same 3 x

What's the problem?

What's the problem?

Now prove this!

let rec same (i : int) (j : int) : bool = if $\mathrm{i}=0$ then $\mathrm{j}=0$ else $\mathrm{j}>0$ \& \& same ($\mathrm{i}-1$) ($\mathrm{j}-1$)

Theorem 3: $\forall x$:nat. same x three $=$ same three x

First, prove a more general theorem:

Theorem 4: $\forall \mathrm{x}$:nat. $\forall \mathrm{y}$:nat. same $\mathrm{x} y=$ same y x

Exercise

- Finish the proof yourself!

It looks just like the proof about
\forall t:tree. \forall u:tree. mirror $\mathrm{t} \mathrm{u}=$ mirror u t

Conclusion:

WALK DOWN BOTH TREES TOGETHER, IN YOUR PROOF;

DON'T STAY AT THE ROOT OF ONE OF THE TREES.

How OCaml is compiled to a von Neumann machine

Speaker: Andrew Appel COS 326 Princeton University

Two models for OCaml

Interpreter

```
let rec eval (e:exp) : exp =
    match e with
    | Int_e i -> Int_e i
    | Op_e(e1,op,e2) ->
        eval_op (eval e1) op (eval e2)
    | Let_e(x,e1,e2) ->
            eval (substitute (eval e1) x e2)
    | Var_e x -> raise (UnboundVariable x)
    | Fun_e (x,e) -> Fun_e (x,e)
    | FunCall_e (e1,e2) ->
            (match eval e1
            | Fun_e (x,e) ->
                eval (Let_e (x,e2,e))
            | _ -> raise TypeError)
    | LetRec_e (x,e1,e2) ->
            (Rec_e (f,x,e)) as f_val ->
            let v = eval e2 in
            substitute f_val f
                            (substitute v x e)
```

Operational semantics
$\frac{e 1-->v 1 \quad e 2-->v 2 \quad \text { eval_op }(v 1, o p, v 2)==v}{e 1 \text { op e2 --> v}}$

$$
\frac{e 1-->v 1 \quad e 2[v 1 / x]-->v 2}{\text { let } x=e 1 \text { in e2 --> v2 }}
$$

$$
\lambda x . e-->\lambda x . e
$$

$$
\begin{array}{ccc}
\text { e1 --> } \lambda x . e ~ e 2-->v 2 & e[v 2 / x]-->v \\
\hline & \text { e1 e2 --> v }
\end{array}
$$

$$
\begin{gathered}
e 1-->\operatorname{rec} f x=e \quad e 2-->v 2 \quad e[r e c f x=e / f][v 2 / x]-->v 3 \\
e 1 e 2-->v 3
\end{gathered}
$$

Another model of computation

com•put•er

/kəm'pyō̄dər/
noun

1. an electronic device for storing and processing data, typically in binary form, according to instructions given to it in a variable program.

John Von Neumann (1903-1957)

- Scientific achievements
- Stored program computers
- Cellular automata
- Inventor of game theory
- Nuclear physics

- Princeton Univ. \& Princeton I.A.S. 1930-1957
- Known for "Von Neumann architecture" (1950)
- In which programs are just data in the memory

Von Neumann Architecture

RAM

How OCaml is compiled to machine language

- Variables
- Integers
- Constant constructors
$\mid C$ of
- Value-carrying constructors

- Pattern-matching
- Let $x=\exp$ in \exp
- Function definition
- Function call
- Tail call

Variables

> Variables are kept in registers, just as in the translation of C programs to assembly language

OCaml
let $x=3$ in ...

Assembly language
 move 3, r2

When you do a function call, variables whose values will still be needed after the call, will be stored into the stack frame, just as in the translation of C programs to assembly language

If you have more active variables in your function than your machine has registers, some variables will be kept in the stack frame instead of registers, j.a.i.t.t.o.C.p.t.a.l

Integers

> The garbage collector needs to distinguish integers from pointers. OCaml does that by using the last bit of the word: (Word-aligned) pointers end in 00 (binary) Integers end in 1 (binary)

OCaml

let $x=3$ in ...

Assembly language
 move 7, r2

There was a little fib on the previous slide

So, integer N is really stored as $2 \mathrm{~N}+1$
And, on a 64-bit-word machine, you really only get 63-bit integers

Constant constructors

This is similar to how C programs represent NULL as 0

Value-carrying constructors

This is similar to how C programs represent malloc'ed struct-pointers

Not malloc/free!

- You may be familiar with how C's malloc/free system works
- Malloc is somewhat expensive:
- function call
- find right-size block in data structure
- update data structure, initialize header and footer
- Free is somewhat expensive:
- function call
- update data structure
- test for coalescing (?)
- OCaml (and other functional languages) have a different system

The heap and the nursery

Machine
registers
(and stack)

Nursery Older generation (much larger)

How to allocate a constructed value

How to allocate a constructed value

```
type t=
    A | B
    | C of int | D oft*t
```

let $q=D p p$ in ...
Assembly language
if $r 5+3>r 6$ goto GC
store ($0|2| 1$), $\mathrm{r} 5[0]$
store r2, r5[1]
store $\mathrm{r} 2, \mathrm{r} 5[2]$
add r5 $+1 \rightarrow$ r3
add $\mathrm{r} 5+3 \rightarrow \mathrm{r} 5$

What happens

WHEN THE NURSERY FILLS UP . . .

GARBAGE COLLECTION!

The nursery is full

Only these records are reachable

Move reachable records to older generation

Reset "alloc" pointer of Nursery

How OCaml is compiled to machine language

\checkmark Variables
\checkmark Integers
\checkmark Constant constructors
\checkmark Value-carrying constructors $\longrightarrow \mid$ C of int | D of t*t
\checkmark Value-carrying constructors
A \| B

- Pattern-matching
- Let $x=\exp$ in \exp
- Function definition
- Function call
- Tail call

Pattern-matching

match x with
$\mid A \rightarrow \exp 1$
| B -> exp2
| Ci-> exp3(i)
| $D(i, j)$-> exp4 $i j$

Assembly language

(suppose x is in register r 2)
andb $\mathrm{r} 2,1 \rightarrow \mathrm{r} 3$
if $\mathrm{r} 3=0$ goto Boxed handle cases A, B goto Done
Boxed:
handle cases C,D
Done:

```
typet=
    A | B
    | C of int | D oft*t
```

First, test whether the constructed value is "unboxed" (constant constructor) or "boxed" (value-carrying constructor)

Pattern-matching

$$
\begin{aligned}
& \text { match } x \text { with } \\
& \mid A->\exp 1 \\
& \mid B->\exp 2 \\
& \mid C i->\exp 3(i) \\
& \mid D(i, j)->\exp 4 i j
\end{aligned}
$$

Assembly language

(suppose x is in register r 2)
andb $r 2,1 \rightarrow r 3$
if $\mathrm{r} 3=0$ goto Boxed
(if $r 2=1$ then exp1 else exp2)
goto Done
Boxed:
handle cases C, D
Done:

Pattern-matching

$$
\begin{aligned}
& \text { match } x \text { with } \\
& \mid A->\exp 1 \\
& \mid B->\exp 2 \\
& \mid C i->\exp 3(i) \\
& \mid D(i, j)->\exp 4 i j
\end{aligned}
$$

Assembly language

(suppose x is in register r2)
andb $\mathrm{r} 2,1 \rightarrow \mathrm{r} 3$
if $\mathrm{r} 3=0$ goto Boxed
handle cases A, B
goto Done
Boxed:
load $\mathrm{r} 2[-1] \rightarrow r 3$
andb $127, r 3 \rightarrow r 3$
(if $r 3=0$ then C else D)
Done:

$$
\begin{aligned}
& \text { type } t= \\
& \text { A | B } \\
& \text { | C of int | D of } t^{*} t
\end{aligned}
$$

Pattern-matching

match x with
$\mid A->\exp 1$
$\mid B->\exp 2$
$\mid C i->\exp 3(i)$
$\mid D(i, j)->\exp i j$

Assembly language

(suppose x is in register $r 2$)

D case:
load $\mathrm{r} 2[0] \rightarrow r 4 \quad$ (fetch i)
load r2[1] \rightarrow r5 (fetch j)
type $t=$
A \| B
| C of int | D of t* t

Summary of Pattern-matching

How OCaml is compiled to machine language

\checkmark Variables
\checkmark Integers
\checkmark Constant constructors
\checkmark Value-carrying constructors
\checkmark Pattern-matching

- Let $x=\exp$ in \exp
- Function definition
- Function call
- Tail call

let $x=y+z$ in ...

$$
\text { let } x=y+z \text { in ... }
$$

Almost as simple as,

Machine
registers
(and stack)

But remember, in order to make integers distinguishable from pointers, OCaml represents integers with low-order-bit 1, which is to say, $r 3=2 y+1 \quad r 1=2 z+1$ and we need to compute $\quad r 4=2(y+z)+1$

Assembly language

```
add r3+r1 }->\mathrm{ r4
sub r4-1 Tr4
```


Function definitions

fun $x->x+1$

More or less, a function is translated as a
label in assembly language, which stands for
an address in machine language,
where some machine instructions implement the function:

```
Assembly language
f:
add rO+2 -> rO
ret
```

But there is one important difference from the way C functions are compiled!

Function definitions

(fun w -> $x+w+y$)

Free variables! (in this case, x and y)

Assembly language

f:
um, how do I know the values of x and y ?
ret

Function definitions

(fun w -> $x+w+y$)
Free variables! (in this case, x and y)

Function definitions

(fun w -> $x+w+y$)

Evaluating "fun ... -> ..."
is like constructing two records on the heap
and will be garbage-collected when no longer in use

Nursery

Older generation

Function call

$$
\text { let } y=f(x) \text { in ... }
$$

Assembly language

push saved locals on stack move $x \rightarrow$ r1 \# arg load $f[1] \rightarrow r 2$ \# env load $\mathrm{f}[0] \rightarrow \mathrm{r} 3$ \# code call r3
pop saved locals from stack

Assembly language f_code:
get free vars from env
ret

Tail call

$f(x)$

Assembly language

move $x \rightarrow r 1$ \# arg
load $\mathrm{f}[1] \rightarrow \mathrm{r} 2$ \#env
load f[0] \rightarrow r3 \# code jmp r3

Conclusion

- Each feature of the OCaml language is implemented in a few instructions of machine language
- Some of these features work just like their counterparts in C,
- What's different:
- garbage collection, instead of malloc/free
- function closures
- distinguishing integers from pointers, by low-order bit

