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A PROOF ABOUT TWO TREES
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Reflection tester
type tree = Leaf of int | Node of tree * tree
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Reflection tester
type tree = Leaf of int | Node of tree * tree

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> mirror b b' && mirror a a')
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Examples
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mirror  foo  bar  =  true mirror  foo  baz =  false 

3 2
1

let foo = Node(Node(Leaf 1, Leaf 2), Leaf 3)

let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

let baz = Node(Node(Leaf 3, Leaf 2), Leaf 1)
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Claim!
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foo bar baz

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

Examples:
mirror foo bar = true = mirror bar foo
mirror foo baz = false = mirror baz foo
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
==

== mirror bar t

• • • (we hope)
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false

== mirror bar t

• • • (we hope)
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false

== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t

• • • (we hope)
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false
== false
== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t

Done with this case!
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && mirror a a')

Where a and b satisfy I.H.,
mirror a bar = mirror bar a
mirror b bar = mirror bar b
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && mirror a a')12



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && mirror a a')13



let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

• • • (we hope)
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3) 

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

• • • (we hope)
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Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3) 

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t
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FAIL!

12
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Theorem:    Ɐ t:tree,     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3) 

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

Induction hyp tells us:
mirror a bar = mirror bar a
mirror b bar = mirror bar b
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What’s the problem?
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What’s the problem?

bar
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Solution: prove a more general theorem!

12
3

Theorem:    Ɐ t:tree,     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
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Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
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Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume an arbitrary  u  about which we know nothing (except its type, “tree”)
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Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Need to prove:   mirror t u = mirror u t
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Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Now, need case analysis on u

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u
== match  u  with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u: first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u: first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u: first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)

== mirror (Leaf j) (Leaf i)
== mirror u t

•••

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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First subcase done

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)
== (j=i)
== mirror (Leaf j) (Leaf i)
== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

Done with Subcase (u=Leaf j).
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Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
==

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

• • •
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Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== mirror (Node(g,h) (Leaf i)
== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

• • •
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Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== false
== mirror (Node(g,h) (Leaf i)
== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u: second subcase done.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false
== mirror (Node(g,h) (Leaf i)
== mirror u t

Done with Subcase (u=Node(g,h)).
Done with Case (t=Leaf i).

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

36



Case analysis on t:  second case

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on t:  second case

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Need to prove:   mirror t u = mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
==

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b)) let rec mirror t1 t2  =

match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  first subcase done.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b))
== mirror u t

Done with Subcase (u=Leaf i).   

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
==

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h let rec mirror t1 t2  =

match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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What does the induction hypothesis tell us?

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h Induction hyp tells us:

Ɐ u:tree. mirror a u = mirror u a
and

Ɐ u:tree. mirror b u = mirror u b

Why?  Because a and b are the immediate subtrees of t
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What does the induction hypothesis tell us?

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h
== mirror b a && mirror b h

Induction hyp tells us:
Ɐ u:tree. mirror a u = mirror u a

and
Ɐ u:tree. mirror b u = mirror u b
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What does the induction hypothesis tell us?

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h
== mirror b a && mirror b h
== mirror b a && mirror h b

Induction hyp tells us:
Ɐ u:tree. mirror a u = mirror u a

and
Ɐ u:tree. mirror b u = mirror u b
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Finishing the proof

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Finishing the proof.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror u t

Done with Subcase (u=Node(g,h)),
Done with Case (t=Node(a,b)

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Finishing the proof.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror u t

Done with Subcase (u=Node(g,h)),
Done with Case (t=Node(a,b)
QED

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')
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Summary of the proof

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf j

mirror t u ==  . . . == mirror u t
Subcase:  u = Node(g,h)

mirror t u ==  . . . == mirror u t
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf j

mirror t u ==  . . . == mirror u t
Subcase:  u = Node(g,h)

mirror t u ==  . . . == mirror u t
QED 54



Our original proof goal

Theorem 1:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof . . . QED

Theorem 2:    Ɐ t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.
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Our original proof goal

Theorem 1:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof . . . QED

Theorem 2:    Ɐ t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.
Apply Theorem 1,  instantiating variable t with t, instantiating u with bar.

QED.
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WHEN PROVING BY INDUCTION,
SOMETIMES YOU MUST
GENERALIZE THE THEOREM

(OR ELSE THE INDUCTION HYPOTHESIS WON’T FIT)

Moral of the story:
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Another example
let rec same (i: int) (j: int) : bool =
if i=0 then j=0
else j>0 && same (i-1) (j-1)

Claim:   Ɐ x:nat.  same x 3 = same 3 x
Remark: x:nat  means that x≥0

Examples:
same 3 3  =  true   =  same 3 3
same 4 3  =  false  =  same 3 4
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== 

== same 3 x

• • •
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …

== same 3 x

• • •
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false

== same 3 x

• • •
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false

== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
== same 3 x

• • •
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false
== false && same (3-1) (0-1)
== 0>0 && same (3-1) (0-1)
== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
== same 3 x

Done with Case: x=0.
64



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3

== same 3 x

• • •

Where a satisfies I.H.,
same a 3  =  same 3 a
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)

== same 3 x

• • •
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 3 x

• • •
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 2 a
== a+1>0 && same 2 a
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
== same 3 x

•••
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 2 a
== a+1>0 && same 2 a
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
== same 3 x

••• Induction hyp tells us:
same a 3 = same 3 a
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What’s the problem?

3x

x-1
x-2
x-3
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What’s the problem?

yx

x-1
x-2
x-3

y-1
y-2
y-3
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Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem 3: Ɐ x:nat.   same x three = same three x

First, prove a more general theorem:

Theorem 4: Ɐ x:nat. Ɐ y:nat.  same x y = same y x
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Exercise
• Finish the proof yourself!

It looks just like the proof about
Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

73



WALK DOWN BOTH TREES TOGETHER, 
IN YOUR PROOF;

DON’T STAY AT THE ROOT OF ONE OF THE TREES.

Conclusion:
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How OCaml is compiled
to a von Neumann machine

Speaker: Andrew Appel
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes
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Two models for OCaml

e1 --> v1            e2 --> v2          eval_op (v1, op, v2) == v
e1 op e2  --> v

i ϵ Ζ
i --> i

e1 --> v1            e2 [v1/x] --> v2
let x = e1 in e2  --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2          e[v2/x] --> v
e1 e2  --> v

e1 --> rec f x = e        e2 --> v2    e[rec f x = e/f][v2/x] --> v3
e1 e2  --> v3

76

let rec eval (e:exp) : exp = 
match e with 
| Int_e i -> Int_e i
| Op_e(e1,op,e2) -> 

eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) -> 

eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)
| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) -> 

(match eval e1 
| Fun_e (x,e) ->

eval (Let_e (x,e2,e))
| _ -> raise TypeError)

| LetRec_e (x,e1,e2) -> 
(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f 

(substitute v x e)

Interpreter Operational semantics



Another model of computation

77

com·put·er
/kəmˈpyo͞odər/
noun
1. an electronic device for storing and 
processing data, typically in binary form, 
according to instructions given to it in a 
variable program.

https://www.google.com/search?q=how+to+pronounce+computer&stick=H4sIAAAAAAAAAOMIfcRoxS3w8sc9YSnDSWtOXmPU5uINKMrPK81LzkwsyczPExLhYglJLcoV4pHi4uJIzs8tKC1JLbJiUWJKzeNZxCqZkV-uUJKvUADUkw_UlKoAUwIAbeK-EFsAAAA&pron_lang=en&pron_country=us&sa=X&ved=2ahUKEwiFjcSQ25XrAhVBzlkKHUPOBtkQ3eEDMAB6BAgDEAg
https://www.google.com/search?q=how+to+pronounce+computer&stick=H4sIAAAAAAAAAOMIfcRoxS3w8sc9YSnDSWtOXmPU5uINKMrPK81LzkwsyczPExLhYglJLcoV4pHi4uJIzs8tKC1JLbJiUWJKzeNZxCqZkV-uUJKvUADUkw_UlKoAUwIAbeK-EFsAAAA&pron_lang=en&pron_country=us&sa=X&ved=2ahUKEwiFjcSQ25XrAhVBzlkKHUPOBtkQ3eEDMAB6BAgDEAg


John Von Neumann (1903-1957)
• Scientific achievements

– Stored program computers
– Cellular automata
– Inventor of game theory
– Nuclear physics

• Princeton Univ. & Princeton I.A.S. 1930-1957
• Known for “Von Neumann architecture” (1950)

– In which programs are just data in the memory
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Von Neumann Architecture

79 79

RAM

Control
Unit

CPU

Registers

Data bus

ALU

Instructions are 
fetched from RAM 

So is data



How OCaml is compiled to machine language

• Variables
• Integers
• Constant constructors
• Value-carrying constructors
• Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

80

type t =
A | B 

| C of int | D of t*t



Variables

81

Variables are kept in registers,
just as in the translation of C programs
to assembly language

OCaml

let x = 3 in … 

Assembly language

move  3, r2

When you do a function call, variables whose values will still be needed
after the call, will be stored into the stack frame, just as in the translation
of C programs to assembly language

If you have more active variables in your function than your machine has
registers, some variables will be kept in the stack frame instead of registers,
j.a.i.t.t.o.C.p.t.a.l



Integers

82

OCaml

let x = 3 in … 

Assembly language

move  7, r2

The garbage collector needs to distinguish
integers from pointers.  OCaml does that
by using the last bit of the word:
(Word-aligned) pointers end in 00   (binary)
Integers end in   1   (binary)

So,  integer N is really stored as 2N+1

And, on a 64-bit-word machine, you really only get 63-bit integers

There was a little fib on the previous slide



Constant constructors

83

type t =
A | B 

| C of int | D of t*t

A     is represented as 1        (the first odd number)
B     is represented as 3        (the second odd number)

This is similar to how C programs represent NULL as 0



Value-carrying constructors

84

type t =
A | B 

| C of int | D of t*t

This is similar to how C programs represent malloc’ed struct-pointers

OCaml

let p = C 3 in
let q = D p p in … 

7p
1 0 header

data word(s)

q
2 1



Not  malloc/free !
• You may be familiar with how C’s malloc/free system works
• Malloc is somewhat expensive:

– function call
– find right-size block in data structure
– update data structure, initialize header and footer

• Free is somewhat expensive:
– function call
– update data structure
– test for coalescing (?)

• OCaml (and other functional languages) have a different 
system
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base

alloc

limit

Nursery Older generation
(much larger)

The heap and the nursery

86

Machine
registers
(and stack)



base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

87

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC

r1
r2

r6
r5

limit
alloc

let q = D p p in … 

p
q

en
ou

gh
 sp

ac
e?



base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

88

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store  (0|2|1), r5[0]

r1
r2

r6
r5

limit
alloc

let q = D p p in … 

p
q

2 1 



base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

89

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store  (0|2|1), r5[0]
store r2, r5[1]

r1
r2

r6
r5

limit
alloc

let q = D p p in … 

p
q

2 1 



base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value
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Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store  (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]

r1
r2

r6
r5

limit
alloc

let q = D p p in … 

p
q

2 1 



base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value
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Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store  (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add  r5+1 →  r3

r1
r2

r6
r5

limit
alloc

let q = D p p in … 

p
q

2 1 



base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value
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Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store  (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add  r5+1 →  r3
add  r5+3 →  r5

r1
r2

r6
r5

limit
alloc

let q = D p p in … 

p
q

2 1 



How to allocate a constructed value

93

Assembly language

if r5+3>r6 goto GC
store  (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add  r5+1 →  r3
add  r5+3 →  r5

let q = D p p in … 

type t =
A | B 

| C of int | D of t*t

test for space available
store the header word
store first field
store second field
assign the result (q)
adjust the “alloc” pointer

initialize the fields

2 instructions

2 instructions



WHEN THE NURSERY FILLS UP . . .

GARBAGE COLLECTION!

What happens
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base

alloc
limit

Nursery Older generation
(much larger)

The nursery is full

95

Machine
registers
(and stack)

r1
r2

r6
r5

limit
alloc

2 1 



base

alloc
limit

Nursery Older generation
(much larger)
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Machine
registers
(and stack)

r1
r2

r6
r5

2 1 

Only these records are reachable



base

alloc
limit

Nursery Older generation
(much larger)
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Machine
registers
(and stack)

r1
r2

r6
r5

2 1 

Move reachable records to older generation

(by breadth-first search)



base
alloc

limit

Nursery Older generation
(much larger)

98

Machine
registers
(and stack)

r1
r2

r6
r5

2 1 

Reset “alloc” pointer of Nursery



How OCaml is compiled to machine language

 Variables
 Integers
 Constant constructors
 Value-carrying constructors
• Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

99

type t =
A | B 

| C of int | D of t*t



Pattern-matching
match x with
| A ->   exp1
| B ->   exp2 
| C i -> exp3(i)
| D(i,j) -> exp4 i j

100

type t =
A | B 

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if  r3=0  goto Boxed
handle cases A,B
goto Done
Boxed:
handle cases C,D
Done:

First, test whether the constructed 
value is “unboxed” (constant constructor)
or “boxed”  (value-carrying constructor)



Pattern-matching
match x with
| A ->   exp1
| B ->   exp2 
| C i -> exp3(i)
| D(i,j) -> exp4 i j

101

type t =
A | B 

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if  r3=0  goto Boxed
(if r2=1 then exp1 else exp2)
goto Done
Boxed:
handle cases C,D
Done:



Pattern-matching
match x with
| A ->   exp1
| B ->   exp2 
| C i -> exp3(i)
| D(i,j) -> exp4 i j

102

type t =
A | B 

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if  r3=0  goto Boxed
handle cases A,B
goto Done
Boxed:
load  r2[-1] → r3
andb 127,r3 → r3
(if r3=0 then C else D)

Done:

7c
1 0 header

d
2 1



Pattern-matching
match x with
| A ->   exp1
| B ->   exp2 
| C i -> exp3(i)
| D(i,j) -> exp i j

103

type t =
A | B 

| C of int | D of t*t

Assembly language
(suppose x is in register r2)

D case:
load r2[0] → r4
load r2[1] → r5

7c
1 0 header

d
2 1

(fetch i)
(fetch j)



Summary of Pattern-matching

match x with
| A ->   exp1
| B ->   exp2 
| C  i -> exp3(i)
| D (i,j) -> exp4 i j

104

Conditional branches
(or switch-statement) Memory loads



How OCaml is compiled to machine language

 Variables
 Integers
 Constant constructors
 Value-carrying constructors
 Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call
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let x = y + z in …

Almost as simple as,
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let x = y + z in …
Machine
registers
(and stack)

r1
r2

yr3

z

Assembly language

add  r3+r1 → r4

But remember, in order to make integers distinguishable from pointers,
OCaml represents integers with low-order-bit 1,
which is to say,   r3=2y+1    r1=2z+1
and we need to compute    r4=2(y+z)+1

Assembly language

add  r3+r1 → r4
sub   r4-1 → r4



Function definitions

More or less, a function is translated as a
label in assembly language, which stands for
an address in machine language, 
where some machine instructions implement the function:

But there is one important difference
from the way C functions are compiled!
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fun x ->  x+1

Assembly language
f:
add  r0+2 → r0
ret



Function definitions

Free variables!   (in this case, x and y)
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(fun w -> x+w+y) 

Assembly language
f:

um, how do I know the values of x and y?

ret



Function definitions

Free variables!   (in this case, x and y)
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(fun w -> x+w+y) 

Assembly language
f_code:

get x and y from environment-pointer

ret

x
y

code
environment

“closure”



Function definitions
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(fun w -> x+w+y) 

code
env

x
y

base

alloc

limit

Nursery Older generation

Evaluating “fun … -> …”

is like constructing two
records on the heap

. . .

and will be garbage-collected
when no longer in use



Function call
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let y = f(x) in …
Assembly language
f_code:

get free vars from env

ret

code
env

f

Assembly language

push saved locals on stack
move x → r1     # arg
load  f[1] → r2  # env
load  f[0] → r3  # code
call   r3
pop saved locals from stack



Tail call

112

f(x)
Assembly language
f_code:

get free vars from env

ret

code
env

f

Assembly language

move x → r1     # arg
load  f[1] → r2  # env
load  f[0] → r3  # code
jmp r3



Conclusion
• Each feature of the OCaml language is implemented in a few 

instructions of machine language

• Some of these features work just like their counterparts in C,

• What’s different:
– garbage collection, instead of malloc/free
– function closures
– distinguishing integers from pointers, by low-order bit
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