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Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by 
much but may allocate at a substantial rate

– because functional programs act by generating new data 
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind
» interesting fact:  at the assembly level, the number of 

writes by a functional program is roughly the same as the 
number of writes by an imperative program
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Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by 
much but may allocate at a substantial rate

– because functional programs act by generating new data 
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind
» interesting fact:  at the assembly level, the number of 

writes by a functional program is roughly the same as the 
number of writes by an imperative program

– What takes up space?
• conventional first-order data:  tuples, lists, strings, datatypes
• function representations (closures)
• the call stack
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CONVENTIONAL DATA
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OCaml Representations for Data Structures
Type:

Representation:

type triple = int * char * int

3 'a' 17(3, 'a', 17)



OCaml Representations for Data Structures
Type:

Representation:

type mylist = int list
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Type:

Representation:

Space Model

Node
0

3 left right

Leaf Node(3, left, right)

type tree = Leaf | Node of int * tree * tree
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Node 3 left right

Actually like this in Ocaml:



Allocating space
In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?
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Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) -> 
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)
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Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
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Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21
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Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) -> 
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

3

9

15

21

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n 
nodes is balanced

t
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Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21  

3

9

15

3

9

15

21

t
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John McCarthy
invented GC

1960
(PhD Princeton 1951,

student of Alonzo Church)



Net space allocated
The garbage collector reclaims 
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21  

3

9

15

3

9

15

21

t

If t is dead 
(unreachable),

18



Net space allocated
The garbage collector reclaims 
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21  

3

9

15

3

9

15

21

t

If t is dead (unreachable),

Then all these nodes
will be reclaimed!
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Net space allocated
The garbage collector reclaims 
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21  

3

9

15

3

9

15

21

t

Net new space allocated:
1 node

(just like “imperative” version
of binary search trees)
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Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)  

3

9

15

3

9

15

21

t

faddle(t)
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Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)  

3

9

15

3

9

15

21

t

faddle(t)

Net new space allocated:
log(N) nodes

but note: “imperative” version 
would have to copy the old tree,

space cost N new nodes!
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Compare

let check_option (o:int option) : int option =
match o with
Some _ -> o

| None -> failwith “found none”

let check_option (o:int option) : int option =
match o with
Some j -> Some j

| None -> failwith “found none”  

23



Compare

let check_option (o:int option) : int option =
match o with
Some _ -> o

| None -> failwith “found none”

let check_option (o:int option) : int option =
match o with
Some j -> Some j

| None -> failwith “found none”

allocates nothing 
when arg is Some i

allocates an option
when arg is Some i
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Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)
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Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1 c2
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Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2
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let (x1,y1) = c1 in
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1 2
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Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1

1 2

arg1

1 2

arg2
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Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

no allocation here
(1 pair allocated in cadd)

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

allocates 2 pairs here
(unless the compiler
happens to optimize…)

29

no allocation here
(1 pair allocated in cadd)



Compare

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd c1 c1

double does not
allocate

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

extracts components:  it is a read
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FUNCTION CLOSURES
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Closures (A reminder)
Nested functions like bar often contain free variables:

Here's bar on its own:

To implement bar, the compiler creates a closure, which is a pair of 
code for the function plus an environment holding the free variables.

let foo y =
let bar x = x + y in
bar

32

let bar x = x + y

y is free in the
definition of bar



But what about nested, higher-order functions?
bar again:

bar's representation:

let bar x = x + y

let f2 (n, env) = 
n + env.y

{y = 1}

environmentcode

closure
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But what about nested, higher-order functions?
To estimate the (heap) space used by a program, we often need 
to estimate the (heap) space used by its closures.

Our estimate will include the cost of the pair:
• two pointers = 2 words   (8 bytes each, or 4 bytes each on some machines) 

• the cost of the environment (1 word in this case).
• but not: the cost of the code (because the same code is 

reused in every closure of this function)

let f2 (n, env) = 
n + env.y

{y = 1}

environmentcode
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Space Model Summary
Understanding space consumption in FP involves:

• understanding the difference between
• live space
• rate of allocation

• understanding where allocation occurs
• any time a constructor is used
• whenever closures are created

• understanding the costs of
• data types (fairly similar to Java)
• costs of closures (pair + environment)
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WHY IT’S IMPORTANT TO PRUNE 
CLOSURE ENVIRONMENTS

A remark about homework 4



Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000



Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

What variables are in scope at this point ? 

fun()->k

n x k
You could build a closure environment 
with all the variables currently in scope.



Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

fun()->k

k

What are the free variables of this function? 

fun()->k

n x k

5 words of memory versus 3 words, what’s the big deal?



Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Run the program to here, and what is in memory?

n

bigdata



What variables are in scope at this point ? 

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata

fun()->k

n x k

0 0 0

n

n closures for (fun()->k),
each is a list of length n,

total space usage n2



Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata

fun()->k

k

What are the free variables of this function? 

n closures for (fun()->k),
each is just a number k,
total space usage O(n)



Therefore
Closures should represent only the free variables of a function
(not all the variables currently in scope),

otherwise the compiled program may use
asymptotically more space,

such as   O(n2) instead of O(n)
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