
A Functional Space Model

COS 326
Andrew W. Appel

Princeton University

slides copyright 2018 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

2

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

– What takes up space?
• conventional first-order data: tuples, lists, strings, datatypes
• function representations (closures)
• the call stack

3

CONVENTIONAL DATA

4

OCaml Representations for Data Structures
Type:

Representation:

type triple = int * char * int

3 'a' 17(3, 'a', 17)

OCaml Representations for Data Structures
Type:

Representation:

type mylist = int list

30

[] [3; 4; 5]

4 5 0

Type:

Representation:

Space Model

Node
0

3 left right

Leaf Node(3, left, right)

type tree = Leaf | Node of int * tree * tree

7

Node 3 left right

Actually like this in Ocaml:

Allocating space
In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

8

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

9

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

10

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

11

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

21

Consider:

insert t 21

t

12

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

15

21

Consider:

insert t 21

t

13

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

9

15

21

Consider:

insert t 21

t

14

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:

insert t 21

t

15

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)

| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)

else
Node (j, left, insert right i)

3

9

15

3

9

15

21

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n
nodes is balanced

t

16

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

17

John McCarthy
invented GC

1960
(PhD Princeton 1951,

student of Alonzo Church)

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

If t is dead
(unreachable),

18

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

If t is dead (unreachable),

Then all these nodes
will be reclaimed!

19

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

3

9

15

3

9

15

21

t

Net new space allocated:
1 node

(just like “imperative” version
of binary search trees)

20

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

21

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

Net new space allocated:
log(N) nodes

but note: “imperative” version
would have to copy the old tree,

space cost N new nodes!

22

Compare

let check_option (o:int option) : int option =
match o with
Some _ -> o

| None -> failwith “found none”

let check_option (o:int option) : int option =
match o with
Some j -> Some j

| None -> failwith “found none”

23

Compare

let check_option (o:int option) : int option =
match o with
Some _ -> o

| None -> failwith “found none”

let check_option (o:int option) : int option =
match o with
Some j -> Some j

| None -> failwith “found none”

allocates nothing
when arg is Some i

allocates an option
when arg is Some i

24

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

25

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1 c2

26

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1

27

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

1 2

c1

1 2

arg1

1 2

arg2

28

Compare

let double (c1:int*int) : int*int =
let c2 = c1 in
cadd c1 c2

no allocation here
(1 pair allocated in cadd)

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

let double (c1:int*int) : int*int =
cadd c1 c1

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd (x1,y1) (x1,y1)

allocates 2 pairs here
(unless the compiler
happens to optimize…)

29

no allocation here
(1 pair allocated in cadd)

Compare

let double (c1:int*int) : int*int =
let (x1,y1) = c1 in
cadd c1 c1

double does not
allocate

let cadd (c1:int*int) (c2:int*int) : int*int =
let (x1,y1) = c1 in
let (x2,y2) = c2 in
(x1+x2, y1+y2)

extracts components: it is a read

30

FUNCTION CLOSURES

31

Closures (A reminder)
Nested functions like bar often contain free variables:

Here's bar on its own:

To implement bar, the compiler creates a closure, which is a pair of
code for the function plus an environment holding the free variables.

let foo y =
let bar x = x + y in
bar

32

let bar x = x + y

y is free in the
definition of bar

But what about nested, higher-order functions?
bar again:

bar's representation:

let bar x = x + y

let f2 (n, env) =
n + env.y

{y = 1}

environmentcode

closure

33

But what about nested, higher-order functions?
To estimate the (heap) space used by a program, we often need
to estimate the (heap) space used by its closures.

Our estimate will include the cost of the pair:
• two pointers = 2 words (8 bytes each, or 4 bytes each on some machines)

• the cost of the environment (1 word in this case).
• but not: the cost of the code (because the same code is

reused in every closure of this function)

let f2 (n, env) =
n + env.y

{y = 1}

environmentcode

34

Space Model Summary
Understanding space consumption in FP involves:

• understanding the difference between
• live space
• rate of allocation

• understanding where allocation occurs
• any time a constructor is used
• whenever closures are created

• understanding the costs of
• data types (fairly similar to Java)
• costs of closures (pair + environment)

35

WHY IT’S IMPORTANT TO PRUNE
CLOSURE ENVIRONMENTS

A remark about homework 4

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

What variables are in scope at this point ?

fun()->k

n x k
You could build a closure environment
with all the variables currently in scope.

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

fun()->k

k

What are the free variables of this function?

fun()->k

n x k

5 words of memory versus 3 words, what’s the big deal?

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Run the program to here, and what is in memory?

n

bigdata

What variables are in scope at this point ?

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata

fun()->k

n x k

0 0 0

n

n closures for (fun()->k),
each is a list of length n,

total space usage n2

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in

fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata

fun()->k

k

What are the free variables of this function?

n closures for (fun()->k),
each is just a number k,
total space usage O(n)

Therefore
Closures should represent only the free variables of a function
(not all the variables currently in scope),

otherwise the compiled program may use
asymptotically more space,

such as O(n2) instead of O(n)

	A Functional Space Model
	Space
	Space
	Conventional data
	OCaml Representations for Data Structures
	OCaml Representations for Data Structures
	Space Model
	Allocating space
	Allocating space
	Allocating space
	Allocating space
	Allocating space
	Allocating space
	Allocating space
	Allocating space
	Allocating space
	Net space allocated
	Net space allocated
	Net space allocated
	Net space allocated
	Net space allocated
	Net space allocated
	Compare
	Compare
	Compare
	Compare
	Compare
	Compare
	Compare
	Compare
	Function closures
	Closures (A reminder)
	But what about nested, higher-order functions?
	But what about nested, higher-order functions?
	Space Model Summary
	Why it’s important to prune closure environments
	Pruning environments
	Pruning environments
	Pruning environments
	Pruning environments
	Pruning environments
	Pruning environments
	Therefore

