Poly-HO
(Polymorphic, Higher-Order Programming)

COS 326
Andrew Appel
Princeton University

slides copyright 2017 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes
A Few More Thoughts on Types & Lists
Java has a paucity of types
- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs
- There is no type ...

OCaml has many more types
- use option when things may be null
- do not use option when things are not null
- OCaml types describe data structures more precisely
 - programmers have fewer cases to worry about
 - entire classes of errors just go away
 - type checking and pattern analysis help prevent programmers from ever forgetting about a case
Java has a paucity of types
- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs

OCaml has many more types
- Use `option` when things may be null
- Do not use `option` when things are not null
- OCaml types describe data structures more precisely
- Programmers have fewer cases to worry about
- Entire classes of errors just go away
- Type checking and pattern analysis help prevent programmers from ever forgetting about a case

Summary of Java Pair Rant

SCORE: OCAML 1, JAVA 0
Java has a paucity of types

– but at least when you forget something, it \textit{throws an exception} instead of \textit{silently going off the trolley}!

If you forget to check for null pointer in a C program,

– no type-check error at compile time
– no exception at run time
– it might crash right away (that would be best), or
– it might permit a buffer-overflow (or similar) vulnerability
– so the hackers pwn you!
Java has a paucity of types
 – but at least when you forget something, it *throws an exception* instead of letting off the trolley!

If you forget to check for null pointer in a C program,
 – no type-check error at compile time
 – no exception at run time
 – it might crash right away (that would be best), or
 – it might permit a buffer-overrun (or similar) vulnerability
 – so the hackers pwn you!

SCORE:
OCAML 1, JAVA 0, C -1
MORE THOUGHTS ON LISTS
The (Single) List Programming Paradigm

• Recall that a list is either:
 – [] (the empty list)
 – v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

```plaintext
let l0 = []; (* length is 0 *)
let l1 = 1::l0; (* length is 1 *)
let l2 = 2::l1; (* length is 2 *)
let l3 = 3::l2; (* length is 3 *)
...
```
Consider the following picture. How long is the linked structure?

Can we build a value with type `int list` to represent it?
Consider This Picture

- How long is it? *Infinitely long?*
- Can we build a value with type `int list` to represent it? *No!*
 - all values with type `int list` have finite length
• Is it a good thing that the type list does not contain any infinitely long lists? Yes!

• A terminating list-processing scheme:

```ocaml
let rec f (xs : int list) : int =
  match xs with
  | [] -> ... do something not recursive ... 
  | hd :: tail -> ... f tail ...
```

terminates because f only called recursively on smaller lists
A Loopy Program

let rec loop (xs : int list) : int =
match xs with
 [] -> 0
| hd::tail -> hd + loop (0::tail)

Does this program terminate?
A Loopy Program

let rec loop (xs : int list) : int =
 match xs with
 | [] -> []
 | hd::tail -> hd + loop (0::tail)

Does this program terminate? **No!** Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.
ML has a strong type system
 • ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is always shorter than the whole list

This makes it easy to write functions that terminate; it would be harder if you had to consider more cases, such as the case that the tail of a list might loop back on itself. Moreover OCaml hits you over the head to tell you what the only 2 cases are!

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. ML is better than other languages because it gives you control over the values you want to program with, via types!
Rant #2: Imperative lists

• One week from today, ask yourself: Which is easier:
 – Programming with immutable lists in ML?
 – Programming with pointers and mutable cells in C/Java
 – I guarantee you are going to say ML.

• there are so many more cases to worry about in C/Java
• so many more things that can go wrong

SCORE: OCAML 2, JAVA 0

C: why bother?
Do not believe his lies.
let rec xs : int list = 0::xs
let rec xs : int list = 0 :: xs

SCORE: OCAMAL 1.8, JAVA 0
C: why bother?
Some Design & Coding Rules

• Save some software-engineering effort:
 Never write the same code twice.

“Ooh, I get it! I’ll write the code once, copy-paste it somewhere else . . . that way, I didn’t write the same code twice”

 – What’s wrong with that?
 • find and fix a bug in one copy, have to fix in all of them.
 • decide to change the functionality, have to track down all of the places where it gets used.

• Instead, a better practice:
 – factor out the common bits into a reusable procedure.
 – even better: use someone else’s (well-tested, well-documented, and well-maintained) procedure.
Factoring Code in OCaml

Consider these definitions:

```ocaml
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```
Consider these definitions:

```ocaml
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```

The code is almost identical – factor it out!
A higher-order function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
```
A *higher-order* function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
```

Uses of the function:

```ocaml
let inc x = x+1
let inc_all xs = map inc xs
```
A **higher-order** function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)
```

Uses of the function:

```ocaml
let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs
```

Writing little functions like `inc` just so we call `map` is a pain.
Factoring Code in OCaml

A higher-order function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);
```

Uses of the function:

```ocaml
let inc_all xs = map (fun x -> x + 1) xs
let square_all xs = map (fun y -> y * y) xs
```

We can use an anonymous function instead. Originally, Alonzo Church wrote this function using λ instead of `fun`: $(\lambda x. x+1)$ or $(\lambda x. x*x)$.
Another example

```ocaml
let rec sum (xs:int list) : int =
match xs with
| [] -> 0
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> 1
| hd::tl -> hd * (prod tl)
```

Goal: Create a function called `reduce` that when supplied with a few arguments can implement both `sum` and `prod`. Define `sum2` and `prod2` using `reduce`.

(Try it)

Goal: If you finish early, use `map` and `reduce` together to find the sum of the squares of the elements of a list.

(Try it)
let rec sum (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> hd * (prod tl)
Another example

```ocaml
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)
```
Another example

```ocaml
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)
```
let add x y = x + y
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs
Using Anonymous Functions

```ocaml
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
Using Anonymous Functions

```ocaml
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```

Wrong -- creates a comment! ug. OCaml -0.1

What does work is: (*)
More on Anonymous Functions

Function declarations:

```
let square x = x*x
let add x y = x+y
```

are **syntactic sugar** for:

```
let square = (fun x -> x*x)
let add = (fun x y -> x+y)
```

In other words, *functions are values* we can bind to a variable, just like 3 or “moo” or true.

Functions are 2nd class no more!
One argument, one result

Simplifying further:

\[
\begin{align*}
\text{let add } &= (\text{fun } x \ y \rightarrow x+y) \\
\text{let add } &= (\text{fun } x \rightarrow (\text{fun } y \rightarrow x+y))
\end{align*}
\]

is shorthand for:

That is, add is a function which:

- when given a value \(x \), \textit{returns a function} \(\text{fun } y \rightarrow x+y \) which:
 - when given a value \(y \), returns \(x+y \).
curry: *verb*

(1) to prepare or flavor with hot-tasting spices

(2) to encode a multi-argument function using nested, higher-order functions.

\[
\text{fun } x \rightarrow (\text{fun } y \rightarrow x+y) \quad (* \text{ curried } *)
\]

\[
\text{fun } x \ y \rightarrow x + y \quad (* \text{ curried } *)
\]

\[
\text{fun } (x,y) \rightarrow x+y \quad (* \text{ uncurried } *)
\]
Curried Functions

Named after the logician Haskell B. Curry (1950s).

– was trying to find minimal logics that are powerful enough to encode traditional logics.

– much easier to prove something about a logic with 3 connectives than one with 20.

– the ideas translate directly to math (set & category theory) as well as to computer science.

– Actually, Moses Schönfinkel did some of this in 1924
 • thankfully, we don't have to talk about Schönfinkelled functions

Curry

Schönfinkel
What’s so good about Currying?

In addition to simplifying the language, currying functions so that they only take one argument leads to two major wins:

1. We can *partially apply* a function.
2. We can more easily *compose* functions.

why u not curry that funkshun?
Curried functions allow defs of new, *partially applied* functions:

```ocaml
let add = (fun x -> (fun y -> x+y))
```

Equivalent to writing:

```ocaml
let inc = add 1
```

which is equivalent to writing:

```ocaml
let inc = (fun y -> 1+y)
```

also:

```ocaml
let inc2 = add 2
let inc3 = add 3
```
SIMPLE REASONING ABOUT HIGHER-ORDER FUNCTIONS
We can factor this program into this program:

```
let square_all ys =
    match ys with
    | [] -> []
    | hd::tl -> (square hd)::(square_all tl)
```

assuming we already have a definition of map:

```
let square_all = map square
```
Goal: Rewrite definitions so my program is simpler, easier to understand, more concise, ...

Question: What are the reasoning principles for rewriting programs without breaking them? For reasoning about the behavior of programs? About the equivalence of two programs?

I want some rules that never fail.
Simple Equational Reasoning

Rewrite 1 (Function de-sugaring):

\[
\text{let } f \ x = \text{body} \quad \Rightarrow \quad \text{let } f = (\text{fun } x \rightarrow \text{body})
\]

Rewrite 2 (Substitution):

\[
(\text{fun } x \rightarrow \ldots \ x \ldots) \ \text{arg} \quad \Rightarrow \quad \ldots \ \text{arg} \ldots
\]

if \(\text{arg} \) is a value or, when executed, will always terminate without effect and produce a value

Rewrite 3 (Eta-expansion):

\[
\text{let } f = \text{def} \quad \Rightarrow \quad \text{let } f \ x = (\text{def}) \ x
\]

if \(f \) has a function type

chose name \(x \) wisely so it does not shadow other names used in \(\text{def} \)
Let’s use these rules to prove that these two functions are equivalent.
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))
Consider square_all

let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))

let square_all =
 map square
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
) square)
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))))

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))
) square
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
) square)
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))

let square_all =
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl))
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))

let square_all ys =
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)
) ys

add argument via eta-expansion
Expanding map square

```ocaml
defining rec map =  
  (fun f ->  
    (fun xs ->  
      match xs with  
      | [] -> []  
      | hd::tl -> (f hd)::(map f tl)))

let square_all ys =  
  match ys with  
  | [] -> []  
  | hd::tl -> (square hd)::(map square tl)
```

substitute again (argument ys for parameter xs)
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)

proof by simple rewriting unrolls definition once
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)

let rec square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)

proof
by induction
eliminates recursive function
map

proof by simple rewriting
unrolls definition once
We saw this:

```ocaml
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);

let square_all = map square
```

Is equivalent to this:

```ocaml
let square_all ys =
  match ys with
  | [] -> []
  | hd::tl -> (square hd)::(map square tl)
```

Morals of the story:

1. OCaml’s **HOT** (higher-order, typed) functions capture recursion patterns
2. we can figure out what is going on by **equational reasoning**.
3. ... but we typically need to do **proofs by induction** to reason about recursive (inductive) functions.
POLY-HO!
Here’s an annoying thing

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);;
```

What if I want to increment a list of floats?
Alas, I can’t just call this map. It works on ints!
Here's an annoying thing

What if I want to increment a list of floats?
Alas, I can't just call this map. It works on ints!

let rec map (f:int->int) (xs:int list) : int list =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);

let rec mapfloat (f:float->float) (xs:float list) :
 float list =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(mapfloat f tl);
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let ints = map (fun x -> x + 1) [1; 2; 3; 4]

let floats = map (fun x -> x +. 2.0) [3.1415; 2.718]

let strings = map String.uppercase ["sarah"; "joe"]
Type of the undecorated map?

```plaintext
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list

We often use greek letters like α or β to represent type variables.

Read as:
• for any types 'a and 'b,
• if you give map a function from 'a to 'b,
• it will return a function
 – which when given a list of 'a values
 – returns a list of 'b values.
We can say this explicitly

```ocaml
let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```

The OCaml compiler is smart enough to figure out that this is the *most general* type that you can assign to the code. (technical term: *principal type*)

We say map is *polymorphic* in the types 'a and 'b – just a fancy way to say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added after the fact and more complicated due to subtyping)
More realistic polymorphic functions

```ocaml
let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list =
  match (xs,ys) with
  | ( [], _) -> ys
  | (_, []) -> xs
  | (x::xst, y::yst) ->
    if lt x y then x::(merge lt xst ys)
    else y::(merge lt xs yst)

let rec split (xs:'a list)(ys:'a list)(zs:'a list) : 'a list * 'a list =
  match xs with
  | [] -> (ys, zs)
  | x::rest -> split rest zs (x::ys)

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =
  match xs with
  | ( [] | _::[]) -> xs
  | _ -> let (first,second) = split xs [] [] in
    merge lt (mergesort lt first) (mergesort lt second)
```
More realistic polymorphic functions

```
mergesort : ('a->'a->bool) -> 'a list -> 'a list

mergesort (<) [3;2;7;1]  
== [1;2;3;7]

mergesort (>) [2; 3; 42]  
== [42 ; 3; 2]

mergesort (fun x y -> String.compare x y < 0) ["Hi"; "Bi"]  
== ["Bi"; "Hi"]

let int_sort = mergesort (<)  
let int_sort_down = mergesort (>)
let str_sort = mergesort (fun x y -> String.compare x y < 0)
```
let mystery = fun x -> (add 1) (square x)

Another Interesting Function

let comp f g x = f (g x)

let mystery = comp (add 1) square

let comp = fun f -> (fun g -> (fun x -> f (g x)))

let mystery = comp (add 1) square

let mystery = (fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square

let mystery = fun x -> (add 1) (square x)

let mystery x = add 1 (square x)
Function composition!

```plaintext
let comp f g x = f (g x)

let mystery = comp (add 1) square
```

\[(f \circ g)(x) = f(g(x))\]

mystery = (add 1) \circ square

\[\text{mystery}(x) = (\text{add 1}) \,(\text{square} \,(x))\]
What is the type of `comp`?

\[
\text{let } \text{comp } f \ g \ x = f \ (g \ x)
\]

\[
\text{let } \text{comp } (f: \ 'b\rightarrow\ 'c) \ (g: \ 'a\rightarrow\ 'b) \ (x: \ 'a) : \ 'c \\
= f \ (g \ x)
\]

\[
\text{comp} : \ ('b \rightarrow \ 'c) \rightarrow \ ('a \rightarrow \ 'b) \rightarrow \ ('a \rightarrow \ 'c)
\]
What does this program do?

\[\text{map } f (\text{map } g [x_1; x_2; \ldots; x_n]) \]

For each element of the list \(x_1, x_2, x_3 \ldots x_n\), it executes \(g\), creating:

\[\text{map } f ([g x_1; g x_2; \ldots; g x_n]) \]

Then for each element of the list \([g x_1, g x_2, g x_3 \ldots g x_n]\), it executes \(f\), creating:

\[[f (g x_1); f (g x_2); \ldots; f (g x_n)] \]
What does this program do?

\[\text{map } f \left(\text{map } g \right) \]

\[x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_n \]

\[g_x_1 \rightarrow g_x_2 \rightarrow \cdots \rightarrow g_x_n \]

\[f_{g_x_1} \rightarrow f_{g_x_2} \rightarrow \cdots \rightarrow f_{g_x_n} \]

reclaimed by garbage collector
What does this program do?

\[
\text{map } f \ (\text{map } g \ [x_1; \ x_2; \ \ldots; \ x_n])
\]

For each element of the list \(x_1, x_2, x_3 \ldots x_n\), it executes \(g\), creating:

\[
\text{map } f \ ([g \ x_1; \ g \ x_2; \ \ldots; \ g \ x_n])
\]

Then for each element of the list \([g \ x_1, g \ x_2, g \ x_3 \ldots g \ x_n]\), it executes \(f\), creating:

\[
[f \ (g \ x_1); \ f \ (g \ x_2); \ \ldots; \ f \ (g \ x_n)]
\]

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)

\[
\text{map } (\text{comp } f \ g) \ [x_1; \ x_2; \ \ldots; \ x_n]
\]
This kind of optimization has a name: [deforestation](because it eliminates intermediate lists and, um, trees...)
How about reduce?

```ocaml
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of `reduce`? Based on the patterns, we know `xs` must be a `('a list)` for some type `a`.
let rec reduce f u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
How about reduce?

```ocaml
let rec reduce f u (xs: 'a list) =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?

f is called so it must be a function of two arguments.
How about reduce?

```ocaml
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
  match xs with
  | []     -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

Furthermore, hd came from xs, so f must take an 'a value as its first argument.
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The second argument to f must have the same type as the result of reduce. Let’s call it 'b.
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The result of f must have the same type as the result of reduce overall: 'b.
How about reduce?

```ocaml
let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?
How about reduce?

```ml
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?

If xs is empty, then reduce returns u. So u’s type must be 'b.
let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
How about reduce?

```ml
let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?

reduce returns the result of f. So f’s result type must be 'b.
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
match xs with
| [] -> u
| hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

('a -> 'b -> 'b) -> 'b -> 'a list -> 'b
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0
What does this do?

```ocaml
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl ->
    (fun x y -> 1+y) hd (reduce (fun ... ) 0 tl)
```

What does this do?

```ocaml
let rec reduce f u xs =  
  match xs with  
  | [] -> u  
  | hd::tl -> f hd (reduce f u tl);

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =  
  match xs with  
  | [] -> 0  
  | hd::tl ->  
    (fun x y -> 1+y) hd (reduce (fun ... ) 0 tl)
```
What does this do?

```ocaml
let rec reduce f u xs =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl);

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =
    match xs with
    | [] -> 0
    | hd::tl ->
        (fun y -> 1+y) (reduce (fun ... ) 0 tl)
```

```
let rec reduce f u xs =  
  match xs with  
  | [] -> u  
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =  
  match xs with  
  | [] -> 0  
  | hd::tl -> 1 + reduce (fun ...) 0 tl
What does this do?

```ocaml
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (\x y -> 1+y) 0

let rec mystery0 xs =
 match xs with
 | [] -> 0
 | hd::tl -> 1 + mystery0 tl
```
**What does this do?**

```ocaml
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =
 match xs with
 | [] -> 0
 | hd::tl -> 1 + mystery0 tl
 List Length!
```
What does this do?

```ocaml
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);

let mystery1 = reduce (fun x y -> x::y) []
```
**What does this do?**

```ocaml
define reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery1 = reduce (fun x y -> x :: y) []

let rec mystery2 xs =
 match xs with
 | [] -> []
 | hd::tl -> hd :: (mystery2 tl)
```

*Copy!*
let rec reduce f u xs =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)

let mystery2 g =
    reduce (fun a b -> (g a)::b) []
let rec reduce f u xs =
   match xs with
    | []  -> u
    | hd::tl -> f hd (reduce f u tl)

let mystery2 g =
   reduce (fun a b -> (g a)::b) []

let rec mystery2 g xs =
   match xs with
    | []  -> []
    | hd::tl -> (g hd)::(mystery2 g tl) map!
Map and Reduce

```plaintext
val map : ('a -> 'b) -> 'a list -> 'b list
val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b
```

We coded `map` in terms of `reduce`:

- ie: we showed we can compute `map f xs` using a call to `reduce ? ? ? ?` just by passing the right arguments in place of `? ? ? ?`

Can we code `reduce` in terms of `map`?
Map and Reduce

val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

let reduce f u xs = ... map (...) (...) ...

(use only: map, f, u, xs; don't use rec)

reduce (+) 0 [1;2;3] = ... map (...) (...) ...

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list
List.mapi f [a0; ...; an] == [f 0 a0; ... ; f n an]

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
List.map2 f [a0; ...; an] [b0; ...; bn] == [f a0 b0 ; ... ; f an bn]

val iter : ('a -> unit) -> 'a list -> unit
List.iter f [a0; ...; an] == f a0; ... ; f an
Summary

• Map and reduce are two *higher-order functions* that capture very, very common *recursion patterns*

• Reduce is especially powerful:
  – related to the “visitor pattern” of OO languages like Java.
  – can implement most list-processing functions using it, including things like copy, append, filter, reverse, map, etc.

• We can write clear, terse, reusable code by exploiting:
  – higher-order functions
  – anonymous functions
  – first-class functions
  – polymorphism
Using map, write a function that takes a list of pairs of integers, and produces a list of the sums of the pairs.
   – e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
   – Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces their quotient if it exists.
   – e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
   – Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters out all of the None’s.
   – e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
   – Why can’t we directly use filter? How would you generalize filter so that you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of numbers.
   – e.g., sum_squares = [3,5,2] = 38