Simple Functional Data

COS 326 Andrew Appel Princeton University

slides copyright 2022 David Walker and Andrew Appel permission granted to reuse these slides for non-commercial educational purposes

1

What is the single most important mathematical concept ever developed in human history?

What is the single most important mathematical concept ever developed in human history?

An answer: The mathematical variable

What is the single most important mathematical concept ever developed in human history?

An answer: The mathematical variable

(runner up: natural numbers/induction)

Why is the mathematical variable so important?

The mathematician says:

"Let x be some integer, we define a polynomial over x ..."

The mathematician says:

"Let x be some integer, we define a polynomial over x ..."

What is going on here? The mathematician has separated a *definition* (of x) from its *use* (in the polynomial).

This is the most primitive kind of *abstraction* (x is *some* integer)

Abstraction is the key to controlling complexity and without it, modern mathematics, science, and computation would not exist.

It allows *reuse* of ideas, theorems ... functions and programs!

OCAML BASICS: LET DECLARATIONS

Abstraction & Abbreviation

In OCaml, the most basic technique for factoring your code is to use let expressions

Instead of writing this expression:

We write this one:

A Few More Let Expressions

```
let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed
```

```
let a = "a" in
let b = "b" in
let as = a ^ a ^ a in
let bs = b ^ b ^ b in
as ^ bs
```

A Technical Note: The Structure of a .ml File

Foo.ml

<declaration>

<declaration>

•••

Every .ml file is a sequence of *declarations*

These "declarations" are a little different than "expressions"

A Technical Note: The Structure of a .ml File

Bar.ml

let x = 17 + 5 let y = x + 22 Bar.ml contains two *let declarations* Let declarations do not end with "in" Let declarations have the form: *let <var> = <expression>*

A Technical Note: The Structure of a .ml File

Baz.ml

```
let x =
  let z = 22 in
  z + z
let y =
  if x < 17 then
    let w = x + 1 in
    2 * w
else
    26
```

Because let declarations have this form:

let <var> = <expression>

they contain expressions

... including "let expressions" which have the form:

let <var> = <expression> in <expression>

Once **bound** to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

given a *use* of a variable, like this one for *x*, work outwards and upwards through a program to find the closest enclosing *definition*. That is the value of this use *forever and always*.

A use of a variable always refers to it's *closest* (in terms of syntactic distance) enclosing declaration. Hence, we say OCaml is a *statically scoped* (or *lexically scoped*) language

Since the two variables (both happened to be named x) are actually different, unconnected things, we can rename them.

This is known as *alpha-conversion*.

Since the two variables (both happened to be named x) are actually different, unconnected things, we can rename them.

This is known as *alpha-conversion*.


```
let x = <expression1> in
<expression2>
```

In a nutshell:

- execute <expression1>, until you get a value v1
- substitute that value v1 for x in <expression2>
- execute <expression2>, until you get a value v2
- the result of the whole execution is v2

let
$$x = 2 + 1$$
 in $x * x$

-->

let
$$x = 2 + 1$$
 in $x * x$

-->

24

-->

Note: I write e1 --> e2 when e1 evaluates to e2 in one step

I defined the language in terms of itself: By reduction of one OCaml expression to another

I'm trying to train you to think at a high level of abstraction.

I didn't have to mention low-level abstractions like assembly code or registers or memory layout to tell you how OCaml works.

let x = 2 in let y = x + x in y * x

--->

31

OCAML BASICS: TYPE CHECKING AGAIN

Back to Let Expressions ... Typing

Back to Let Expressions ... Typing

Let Expressions Really Are Expressions

Let Expressions Really Are Expressions

Let Expressions Really Are Expressions

Exercise

Which of (a) or (b) type check? Explain why.

On a piece of paper (or in your favorite editor), show the step-by-step evaluation of the example that type checks.

Critique the *programming style* used in these examples.

OCAML BASICS: FUNCTIONS

let add_one (x:int) : int = 1 + x

Note: recursive functions with begin with "let rec"

Nonrecursive functions:

Nonrecursive functions:

With a local definition: local function definition hidden from clients let add_two' (x:int) : int = let add_one x = 1 + x in add_one (add_one x) Good style: types on top-level definitions

Types for Functions

Some functions:

```
let add_one (x:int) : int = 1 + x
let add_two (x:int) : int = add_one (add_one x)
let add (x:int) (y:int) : int = x + y
function with two arguments
```

Types for functions:

```
add_one : int -> int
add_two : int -> int
add : int -> int -> int
```

44

General Rule:

```
If a function f: T1 \rightarrow T2
and an argument e: T1
then f e: T2
```

add_one : int -> int
3 + 4 : int
add_one (3 + 4) : int

Recall the type of add:

Definition:

let add (x:int) (y:int) : int = x + y

Type:

add : int -> int -> int

Recall the type of add:

Definition:

let add (x:int) (y:int) : int = x + y

Type:

add : int -> int -> int

Same as:

add : int -> (int -> int)

General Rule:

If a function $f: T1 \rightarrow T2$ and an argument e: T1then f e: T2


```
add : int -> int -> int
3 + 4 : int
add (3 + 4) : ???
```

General Rule:

If a function f : T1 -> T2 and an argument e : T1 then f e : T2


```
add : int -> (int -> int)
3 + 4 : int
add (3 + 4) :
```

General Rule:

If a function f : T1 -> T2 and an argument e : T1 then f e : T2

General Rule:

If a function f : T1 -> T2 and an argument e : T1 then f e : T2

```
add : int -> int -> int
3 + 4 : int
add (3 + 4) : int -> int
(add (3 + 4)) 7 : int
```

General Rule:

If a function f : T1 -> T2 and an argument e : T1 then f e : T2

```
add : int -> int -> int
3 + 4 : int
add (3 + 4) : int -> int
add (3 + 4) 7 : int
```

One key thing to remember

• If you have a function f with a type like this:

$A \to B \to C \to D \to E \to F$

• Then each time you add an argument, you can get the type of the result by knocking off the first type in the series

 $fa1: B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \text{ (if } a1: A)$ $fa1 a2: C \rightarrow D \rightarrow E \rightarrow F \text{ (if } a2: B)$ $fa1 a2 a3: D \rightarrow E \rightarrow F \text{ (if } a3: C)$ fa1 a2 a3 a4 a5: F (if a4: D and a5: E)

TYPE ERRORS

Type errors for if statements can be confusing sometimes. Recall:

```
let rec concatn s n =
    if n <= 0 then
    ...
    else
    s ^ (concatn s (n-1))</pre>
```

Type errors for if statements can be confusing sometimes. Recall:

```
let rec concatn s n =
    if n <= 0 then
    ...
    else
    s ^ (concatn s (n-1))</pre>
```

ocaml might point to (concatn s (n-1)) and says:

Error: This expression has type int but an expression was expected of type string

Type errors for if statements can be confusing sometimes. Recall:

```
let rec concatn s n =
    if n <= 0 then
    ...
    else
    s ^ (concatn s (n-1))</pre>
```

ocaml might say:

Error: This expression has type int but an expression was expected of type string

or ocaml might point to the expression (s ^ (concatn ...)) and say:

Error: This expression has type string but an expression was expected of type int

Type errors for if statements can be confusing sometimes. Example. We create a string from s, concatenating it n times:

Error: This expression has type int but an expression was expected of type string

Error: This expression has type string but an expression was expected of type int

Type errors for if statements can be confusing sometimes. Example. We create a string from s, concatenating it n times:

Error: This expression has type int but an expression was expected of type string

Error: This expression has type string but an expression was expected of type int

Type errors for if statements can be confusing sometimes. Example. We create a string from s, concatenating it n times:

The type checker points to *some* place where there is *disagreement*.

Moral: Sometimes you need to look in an earlier branch for the error even though the type checker points to a later branch. The type checker doesn't know what the user wants.

A Tactic: Add Typing Annotations

```
let rec concatn (s:string) (n:int) : string =
    if n <= 0 then
      0
    else
      s ^ (concatn s (n-1))

Error: This expression has type int but an
    expression was expected of type string</pre>
```

Exercise

Given the following code:

```
let munge b x =
    if not b then
        string_of_int x
    else
        "hello"
let y = 17
```

What are the types of the following expressions? (And what must the types of f and g be?)

```
munge : ??
munge (y > 17) : ??
munge true (f (munge false 3)) : ??
munge true (g munge) : ??
```

62

DATA STRUCTURES: THE TUPLE

* it is really our second complex data structure since functions are data structures too!

A tuple is a fixed, finite, ordered collection of values

Some examples with their types:

(1, 2) : int * int
("hello", 7 + 3, true) : string * int * bool
('a', ("hello", "goodbye")) : char * (string * string)

To use a tuple, we extract its components General case:

let (id1, id2, ..., idn) = e1 in e2

An example:

let (x,y) = (2,4) in x + x + y

65

To use a tuple, we extract its components General case:

let (id1, id2, ..., idn) = e1 in e2

An example:

let
$$(x,y) = (2,4)$$
 in $x + x + y$ substitute!

To use a tuple, we extract its components General case:

let (id1, id2, ..., idn) = e1 in e2

An example:

67

Rules for Typing Tuples

if e1 : t1 and e2 : t2 then (e1, e2) : t1 * t2

Rules for Typing Tuples

Problem:

- A point is represented as a pair of floating point values.
- Write a function that takes in two points as arguments and returns the distance between them as a floating point number

Writing Functions Over Typed Data

Steps to writing functions over typed data:

- 1. Write down the function and argument names
- 2. Write down argument and result types
- 3. Write down some examples (in a comment)

Writing Functions Over Typed Data

Steps to writing functions over typed data:

- 1. Write down the function and argument names
- 2. Write down argument and result types
- 3. Write down some examples (in a comment)
- 4. Deconstruct input data structures
 - the argument types suggests how to do it
- 5. Build new output values
 - the result type suggests how you do it

Writing Functions Over Typed Data

Steps to writing functions over typed data:

- 1. Write down the function and argument names
- 2. Write down argument and result types
- 3. Write down some examples (in a comment)
- 4. Deconstruct input data structures
 - the argument types suggests how to do it
- 5. Build new output values
 - the result type suggests how you do it
- 6. Clean up by identifying repeated patterns
 - define and reuse helper functions
 - your code should be elegant and easy to read

Writing Functions Over Typed Data

Steps to writing functions over typed data:

- 1. Write down the function and argument names
- 2. Write down argument and result types
- 3. Write down some examples (in a comment)
- 4. Deconstruct input data structures
 - the argument types suggests how to do it
- 5. Build new output values
 - the result type suggests how you do it
- 6. Clean up by identifying repeated patterns
 - define and reuse helper functions
 - your code should be elegant and easy to read

Types help structure your thinking about how to write programs.

implement some tests

MORE TUPLES

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

```
(4.0, 5, "hello") : float * int * string
```

Here's a tuple with 4 fields:

```
(4.0, 5, "hello", 55) : float * int * string * int
```

Here's a tuple with 0 fields:

() : unit

SUMMARY: BASIC FUNCTIONAL PROGRAMMING

Writing Functions Over Typed Data

Steps to writing functions over typed data:

- 1. Write down the function and argument names
- 2. Write down argument and result types
- 3. Write down some examples (in a comment)
- 4. Deconstruct input data structures
- 5. Build new output values
- 6. Clean up by identifying repeated patterns

For tuple types:

- when the input has type t1 * t2
 - use let (x,y) = ... to deconstruct
- when the output has type t1 * t2
 - use (e1, e2) to construct

We will see this paradigm repeat itself over and over

Records

Records are a lot like tuples. It's just that they have named fields.

Having named fields (records rather than tuples) often makes it easier to understand a program, especially when there are more than just 2 or 3 fields in a structure.

Records

Records are a lot like tuples. It's just that they have named fields.

Having named fields (records rather than tuples) often makes it easier to understand a program, especially when there are more than just 2 or 3 fields in a structure.

An example:

```
type name = {first:string; last:string;}
let my_name = {first="David"; last="Walker";}
let to_string (n:name) = n.last ^ ", " ^ n.first
```

Records

Records are a lot like tuples. It's just that they have named fields.

Having named fields (records rather than tuples) often makes it easier to understand a program, especially when there are more than just 2 or 3 fields in a structure.

An example:

```
type name = {first:string; last:string;}
let my_name = {first="David"; last="Walker";}
let to_string (n:name) = n.last ^ ", " ^ n.first
```

Note: Records come with several other useful features, like functional updates via "with expressions."

See Real World OCaml for more info.

WRAP-UP

Writing Functions Over Typed Data

Steps to writing functions over typed data:

- 1. Write down the function and argument names
- 2. Write down argument and result types
- 3. Write down some examples (in a comment)
- 4. Deconstruct input data structures
- 5. Build new output values
- 6. Clean up by identifying repeated patterns

For tuple types:

- when the input has type t1 * t2
 - use let (x,y) = ... to deconstruct
- when the output has type t1 * t2
 - use (e1, e2) to construct

We will see this paradigm repeat itself over and over

Exercise

What error do you get when you try to compile this file? (Type it in.) Why?

```
type item = {
  number: int;
  name: string;
}
type contact = {
  name: string*string; (* first and last name *)
  phone: item;
}
let get_name x = x.name
let myphone = {number=122; name="iphone";}
let _ = print_endline (get_name myphone)
```

WHERE DID TYPE SYSTEMS COME FROM?

101

Georg Cantor

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html

Georg Cantor

Über eine Eigenshaft des Inbegriffes aller reellen algebraischen Zahlen. 1874

(On a Property of the System of all the Real Algebraic Numbers)

"Considered the first purely theoretical paper on set theory." *

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html

Bertrand Russell

Bertrand Russell

He noticed that Cantor's set theory allows the definition of this set S:

 $\{ A \mid A \text{ is a set and } A \notin A \}$

104

Bertrand Russell

He noticed that Cantor's set theory allows the definition of this set S:

 $\{ A \mid A \text{ is a set and } A \notin A \}$

If we assume S is not in the set S, then by definition, it must belong to that set.

If we assume S is in the set S, then it contradicts the definition of S.

Russell's paradox

105

Bertrand Russell

He noticed that Cantor's set theory allows the definition of this set S:

 $\{ A \mid A \text{ is a set and } A \notin A \}$

Russell's solution:

Each set has a distinct type: type 1, 2, 3, 4, 5, ...

A set of type i+1 can only have elements of type i so it can't include itself.

Aside

Ernst Zermelo

Abraham Fraenkel

Developers of Zermelo-Fraenkel set theory (1921). An alternative solution to Russell's paradox. 107

Developed the lambda calculus (ancestor of ML / OCaml)

and "The simple theory of types" (ancestor of to ML's type system)

Alonzo Church, 1903-1995 Princeton Professor, 1929-1967 108