
COS 326
Functional Programming

Andrew Appel
Princeton University

slides copyright 2013-2022 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

In 1936, Alonzo Church invented
the lambda calculus. He called
it a logic, but it was a language
of pure functions -- the world's
first programming language.

He said:

"There may, indeed, be other
applications of the system than
its use as a logic."

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

2

Indeed!

Alonzo Church
1934 -- developed lambda calculus

Alan Turing (PhD Princeton 1938)
1936 -- developed Turing machines

Programming Languages Computers

http://press.princeton.edu/chapters/s9780.pdf
Optional reading: The Birth of Computer Science at Princeton in the 1930s
by Andrew W. Appel, 2012.

3

http://assets.press.princeton.edu/chapters/s9780.pdf

Vastly Abbreviated FP Genealogy
LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(1960-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

4

Vastly Abbreviated FP Geneology
LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(50s-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

5

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for concurrency,
Haskell for managing PHP,
OCaml for bug-finding

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

www.artima.com/scalazine/articles/twitter_on_scala.html
www.infoq.com/presentations/haskell-barclays
www.janestreet.com/technology/index.html#work-functionally
msdn.microsoft.com/en-us/fsharp/cc742182
research.google.com/archive/mapreduce-osdi04.pdf
www.lightbend.com/case-studies/how-apache-spark-scala-and-functional-programming-made-hard-problems-easy-at-barclays
www.haskell.org/haskellwiki/Haskell_in_industry

Haskell
for specifying
equity derivatives

mathematicians
Coq (re)proof of
4-color theorem

6

COURSE LOGISTICS

7

Course Staff

Joomy Korkut
Preceptor

email: joomy@cs

Andrew Appel
Professor

office: CS 209
email: appel@cs

8

Nikhil Pimpalkhare
Preceptor

nikhil.pimpalkhare
@princeton.edu

9

Collaboration Policy
The COS 326 collaboration policy can be found here:

Read it in full prior to beginning the first assignment.

Please ask questions whenever anything is unclear, at
any time during the course.

http://www.cs.princeton.edu/~cos326/info.php#collab

10

A Typical Week
Monday

– Lecture
Tuesday

– Assignment from last week due (7 assignments total)
– Your first assignment is due Tuesday Sept 13 at 11:59pm

Wednesday
– Lecture
– Next assignment is available
– start assignment with material from lecture

Thursday/Friday
– mandatory precept reinforces lecture content
– you may have questions for your preceptor about the

assignment

11

Course Textbook

http://realworldocaml.org/

12

Exams
Midterm
• in class during midterm week

Final
• during exam period in December
• make your travel plans accordingly
• I have no control at all over when the exam occurs,

the Registrar schedules exams.
• The final is not “cumulative” over the whole

semester, it covers just “equational reasoning”

13

R e a d i n g P e r i o d

F i n a l E x a m s

Special Calendar Note
14

Lecture Lecture Precept Precept

Friday precepts will meet on December 9th, even though it
may officially be Reading Period.

Assignment 0

Install opam, ocaml, VS Code
[and if you use Windows: WSL2]

on your machine by the time precept begins tomorrow.

Resources Page:

http://www.cs.princeton.edu/~cos326/resources.php

Hint:

ocaml.org

15

http://www.cs.princeton.edu/courses/archive/fall13/cos326/resources.php

Public Service Announcement

The Pen is Mighter than the Keyboard:
Advantages of Longhand Over Laptop Note Taking

Pam Mueller (Princeton University)
Daniel Oppenheimer (UCLA)
Journal of Psychological Science, June 2014, vol 25, no 6

http://pss.sagepub.com/content/25/6/1159.fullkeytype=ref&siteid=sppss&ijkey=CjRAwmrlURGNw

https://www.scientificamerican.com/article/a-learning-secret-don-t-take-notes-with-a-laptop/

• You learn conceptual topics better by taking notes by hand.
• Instagram and Fortnite distract your classmates.

16

http://pss.sagepub.com/content/25/6/1159.fullkeytype=ref&siteid=sppss&ijkey=CjRAwmrlURGNw

Functional Programming

Thinking Functionally

imperative code:

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

18

commands modify or change an
existing data structure (like pair)

pure, functional code:

let (x,y) = pair in
(y,x)

you analyze existing data (like pair)
and you produce new data (y,x)

Thinking Functionally

imperative code:

• outputs are irrelevant!
• output is not function of input
• data properties change
• unrepeatable
• parallelism hidden
• harder to test
• harder to compose

pure, functional code:

• outputs are everything!
• output is function of input
• data properties are stable
• repeatable
• parallelism apparent
• easier to test
• easier to compose

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

let (x,y) = pair in
(y,x)

19

This simple switch in perspective can change the way you
think

about programming and problem solving.

20

Why OCaml?
21

Small, orthogonal core based on the lambda calculus.
– Control is based on (recursive) functions.
– Instead of for-loops, while-loops, do-loops, iterators, etc.

• can be defined as library functions.
– Makes it easy to define semantics

Supports first-class, lexically scoped, higher-order procedures
– a.k.a. first-class functions or closures or lambdas.
– first-class: functions are data values like any other data value

• like numbers, they can be stored, defined anonymously, ...
– lexically scoped: meaning of variables determined statically.
– higher-order: functions as arguments and results

• programs passed to programs; generated from programs

These features also found in Scheme, Haskell, Scala, F#, Clojure,

Why OCaml?
22

Statically typed: debugging and testing aid
– compiler catches many silly errors before you can run the code.

• A type is worth a thousand tests
– Java is also strongly, statically typed.
– Scheme, Python, Javascript, etc. are all strongly, dynamically

typed – type errors are discovered while the code is running.
Strongly typed: compiler enforces type abstraction.

– cannot cast an integer to a record, function, string, etc.
• so we can utilize types as capabilities; crucial for local reasoning

– C/C++ are weakly typed (statically typed) languages. The compiler
will happily let you do something smart (more often stupid).

Type inference: compiler fills in types for you

Installing, Running OCaml
23

• OCaml comes with compilers:
– "ocamlc" – fast bytecode compiler
– "ocamlopt" – optimizing, native code compiler
– "dune" – a build system for OCaml

• And an interactive, top-level shell:
– useful for trying something out.
– "ocaml" or "utop" at the prompt.
– but use the compiler (via dune) most of the time

• See the course web pages for installation pointers
– also OCaml.org

Editing OCaml Programs
24

• Many options:
– We recommend VS Code, with its OCaml mode

But you can use other text editors if you want, such as:
– Emacs

• what your professors tend to use
• good but not great support for OCaml.

– Sublime, atom
• Many CS326 students have used these

AN INTRODUCTORY EXAMPLE
(OR TWO)

25

A First OCaml Program

hello.ml:

print_string "Hello COS 326!!\n"

26

27

28

29

30

31

32

A First OCaml Program

hello.ml:

print_string "Hello COS 326!!\n"

33

print_string "Hello COS 326!!\n"

A First OCaml Program

hello.ml:

a function its string argument
enclosed in "..."

a program
can be nothing
more than
just a single
expression
(but that is
uncommon)

34

no parens. normally call a function f like this:

f arg

(parens are used for grouping, precedence
only when necessary)

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

a comment
(* ... *)sumTo8.ml:

41

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

the name of the function being defined

the keyword “let” begins a definition; keyword “rec” indicates recursion

sumTo8.ml:

42

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

result type int

argument
named n
with type int

sumTo8.ml:

43

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n’ -> n’ + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

deconstruct the value n
using pattern matching

data to be
deconstructed
appears
between
key words
“match” and
“with”

sumTo8.ml:

44

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

_

A Second OCaml Program

deconstructed data matches one of 2 cases:
(i) the data matches the pattern 0, or (ii) the data matches the variable pattern n

vertical bar "|" separates the alternative patterns

sumTo8.ml:

45

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

Each branch of the match statement constructs a result

construct
the result 0

construct
a result
using a
recursive
call to sumTo

sumTo8.ml:

46

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =

match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

print the
result of
calling
sumTo on 8

print a
new line

sumTo8.ml:

47

48

49

This is not part of the
program, it's just VS Code
reminding you the type of

the "sumTo" function

50

Good program style: before
each function definition,
write a comment saying

what it's supposed to do,
perhaps with examples

51

52

53

54

55

56

57

58

59

OCAML BASICS:
EXPRESSIONS, VALUES, SIMPLE TYPES

60

Terminology: Expressions, Values, Types
Expressions are computations

– 2 + 3 is a computation

Values (a subset of the expressions) are the results of computations
– 5 is a value

Types describe collections of values and the computations that
generate those values

– int is a type

– values of type int include
• 0, 1, 2, 3, …, max_int
• -1, -2, …, min_int

61

Some simple types, values, expressions
62

Type: Values: Expressions:
int -2, 0, 42 42 * (13 + 1)

float 3.14, -1., 2e12 (3.14 +. 12.0) *. 10e6

char ’a’, ’b’, ’&’ int_of_char ’a’

string "moo", "cow" "moo" ^ "cow"
bool true, false if true then 3 else 4

unit () print_int 3

For more primitive types and functions over them,
see the OCaml Reference Manual here:

https://ocaml.org/api/Stdlib.html

Evaluation
63

42 * (13 + 1)

Evaluation
64

42 * (13 + 1) -->* 588

Read like this: “the expression 42 * (13 + 1) evaluates to the value 588”

The “*” is there to say that it does so in 0 or more small steps

Evaluation
65

42 * (13 + 1) -->* 588

Read like this: “the expression 42 * (13 + 1) evaluates to the value 588”

The “*” is there to say that it does so in 0 or more small steps

Here I’m telling you how to execute an OCaml expression --- i.e., I’m telling you
something about the operational semantics of OCaml

More on semantics later.

Evaluation
66

42 * (13 + 1) -->* 588

(3.14 +. 12.0) *. 10e6 -->* 151400000.

int_of_char ’a’ -->* 97

"moo" ^ "cow" -->* “moocow”

if true then 3 else 4 -->* 3

print_int 3 -->* ()

Evaluation
67

1 + "hello" -->* ???

Evaluation
68

1 + "hello" -->* ???

“+” processes integers
“hello” is not an integer
evaluation is undefined!

Don’t worry! This expression doesn’t type check.

Aside: See this 4-min talk on Javascript:
https://www.destroyallsoftware.com/talks/wat

OCAML BASICS:
CORE EXPRESSION SYNTAX

69

Core Expression Syntax
70

The simplest OCaml expressions e are:
• values numbers, strings, bools, ...
• id variables (x, foo, ...)
• e1 op e2 operators (x+3, ...)
• id e1 e2 … en function call (foo 3 42)
• let id = e1 in e2 local variable decl.
• if e1 then e2 else e3 a conditional
• (e) a parenthesized expression
• (e : t) an expression with its type

A note on parentheses
71

In most languages, arguments are parenthesized & separated by commas:

f(x,y,z) sum(3,4,5)

In OCaml, we don’t write the parentheses or the commas:

f x y z sum 3 4 5

But we do have to worry about grouping. For example,

f x y z
f x (y z)

The first one passes three arguments to f (x, y, and z)
The second passes two arguments to f (x, and the result of applying the

function y to z.)

OCAML BASICS:
TYPE CHECKING

72

Type Checking
Every value has a type and so does every expression

This is a concept that is familiar from Java but it becomes more
important when programming in a functional language

We write (e : t) to say that expression e has type t. eg:

2 : int "hello" : string

2 + 2 : int "I say " ^ "hello" : string

73

Type Checking Rules
There are a set of simple rules that govern type checking

– programs that do not follow the rules will not type check and
OCaml will refuse to compile them for you (the nerve!)

– at first you may find this to be a pain …

But types are a great thing:
– help us think about how to construct our programs
– help us find stupid programming errors
– help us track down errors quickly when we edit our code
– allow us to enforce powerful invariants about data structures

74

Type Checking Rules
Example rules:

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

75

Type Checking Rules
Example rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3) (4)

76

Type Checking Rules
Example rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

77

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

78

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

79

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5 : int (By rule 1)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

80

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5 : int (By rule 1)
Therefore, (2 + 3) * 5 : int (By rule 4 and our previous work)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

FYI: This is a formal proof
that the expression is well-

typed!

81

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

???? * ???? : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

82

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

7 * ???? : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

83

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

7 * (add_one 17) : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

84

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
OCaml Version 4.13.1

#

85

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
OCaml Version 4.13.1

3 + 1;;

86

use “;;”
to end
a phrase
in the
top level

(“;;” can also end a top-level phrase in a file, but I’m going to avoid using it there because then some of you will confuse it with a ”;” ….)

or utop

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
OCaml Version 4.13.1

3 + 1;;
- : int = 4

press
return
and you
find out
the type
and the
value

87

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
OCaml Version 4.13.1

3 + 1;;
- : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#

press
return
and you
find out
the type
and the
value

88

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
OCaml Version 4.13.1

3 + 1;;
- : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#quit;;
$

89

Type Checking Rules
Example rules:

Violating the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

"hello" : string (By rule 2)
1 : int (By rule 1)
1 + "hello" : ?? (NO TYPE! Rule 3 does not apply!)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

90

• Violating the rules:

• The type error message tells you the type that was expected
and the type that it inferred for your subexpression

• By the way, this was one of the nonsensical expressions that
did not evaluate to a value

• It is a good thing that this expression does not type check!
“Well typed programs do not go wrong”

Robin Milner, 1978

Type Checking Rules
Violating the rules:

The type error message tells you the type that was expected and
the type that it inferred for your subexpression
By the way, this was one of the nonsensical expressions that did
not evaluate to a value
It is a good thing that this expression does not type check!

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

91

Type Checking Rules
Violating the rules:

A possible fix:

One of the keys to becoming a good ML programmer is to
understand type error messages.

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

"hello" ^ (string_of_int 1);;
- : string = "hello1"

92

Type Checking Rules
What about this expression:

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

3 / 0 ;;
Exception: Division_by_zero.

93

Type Checking Rules
What about this expression:

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

– In general, detecting a divide-by-zero error requires we know that
the divisor evaluates to 0.

– In general, deciding whether the divisor evaluates to 0 requires
solving the halting problem:

There are type systems that will rule out divide-by-zero errors, but
they require programmers supply proofs to the type checker

3 / 0 ;;
Exception: Division_by_zero.

3 / (if turing_machine_halts m then 0 else 1);;

94

Isn’t that cheating?
“Well typed programs do not go wrong”

Robin Milner, 1978

(3 / 0) is well typed. Does it “go wrong?” Answer: No.

“Go wrong” is a technical term meaning, “have no defined
semantics.” Raising an exception is perfectly well defined
semantics, which we can reason about, which we can handle in
ML with an exception handler.

So, it’s not cheating.

(Discussion: why do we make this distinction, anyway?)

95

Type Soundness
“Well typed programs do not go wrong”

Programming languages with this property have
sound type systems. They are called safe languages.

Safe languages are generally immune to buffer overrun
vulnerabilities, uninitialized pointer vulnerabilities, etc., etc.
(but not immune to all bugs!)

Safe languages: ML, Java, Python, …

Unsafe languages: C, C++

96

OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

98

OCaml
OCaml is a functional programming language

– express control flow and iteration by defining functions
– not by modifying the values of variables and data structures

OCaml is a typed programming language
– the type of an expression correctly predicts the kind of value

the expression will generate when it is executed
– types help us understand and write our programs
– the type system is sound; the language is safe

99

Imperative: “do this” Functional: “be this”

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Vastly Abbreviated FP Genealogy
	Vastly Abbreviated FP Geneology
	Functional Languages: Who’s using them?
	Course logistics
	Course Staff
	Slide Number 9
	Collaboration Policy
	A Typical Week
	Course Textbook
	Exams
	Special Calendar Note
	Assignment 0
	Public Service Announcement
	Functional Programming
	Thinking Functionally
	Thinking Functionally
	This simple switch in perspective can change the way you �think �about programming and problem solving.
	Why OCaml?
	Why OCaml?
	Installing, Running OCaml
	Editing OCaml Programs
	An introductory example�(or two)
	A First OCaml Program
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	A First OCaml Program
	A First OCaml Program
	A Second OCaml Program
	A Second OCaml Program
	A Second OCaml Program
	A Second OCaml Program
	A Second OCaml Program
	A Second OCaml Program
	A Second OCaml Program
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Ocaml Basics:�Expressions, Values, Simple Types
	Terminology: Expressions, Values, Types
	Some simple types, values, expressions
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Ocaml Basics:�Core Expression Syntax
	Core Expression Syntax
	A note on parentheses
	Ocaml Basics:�Type checking
	Type Checking
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Type Checking Rules
	Isn’t that cheating?
	Type Soundness
	Overall Summary:�A short introduction to�Functional Programming
	OCaml

