
Assignment #10
Due: 6:00pm Friday 9 December 2022

Upload at: https://www.gradescope.com/courses/438130/assignments/2475394

Assignments in COS 302 should be done individually. See the course syllabus for the collaboration policy.

Remember to append your Colab PDF as explained in the first homework, with all outputs visible.
When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (35pts)
In gradient descent, we attempt to minimize some function f (x) by starting with some initial x0 and then iteratively
modifying the parameters x ∈ Rn according to the following formula:

xt+1 ← xt − λ(∇x f (xt))T

for some small λ ≥ 0 known as the learning rate or step size. This procedure modifies x so as to move in a
direction proportional to the negative gradient. This basic procedure is the basis for many optimization algorithms
across science and engineering.

Consider the simple function f (x) = xT Ax for a (constant) symmetric positive definite matrix A ∈ Rn×n.

(A) Implement a function f(A, x) that takes as input an n × n numpy array A and a 1D array x of length n
and returns the output for f (x) above. Test it on the values

x =
!
−1
2

"
A =

!
3 −1
−1 2

"
.

(B) Implement a function grad_f(A, x) that takes the same two arguments as above but returns ∇x f (x)
evaluated at x. Test it on the values x and A above.

(C) Now implement a third and final function grad_descent(A, x0, lr, num_iters) that takes the
additional arguments lr, representing the learning rate λ above, and num_iters indicating the total
number of iterations of gradient descent to perform. The function should loop and print the values of xt
and f (xt) at each iteration of gradient descent.

(D) Use your function to perform gradient descent on f with

x0 =

!
10
10

"
A =

!
1 0
0 4

"
.

Run gradient descent for 50 iterations with learning rates of 1, 0.25, 0.1, and 0.01. What do you notice?
Does xt always converge to the same value? Does our gradient descent algorithm work every time?

1

https://www.gradescope.com/courses/438130/assignments/2475394
https://www.cs.princeton.edu/courses/archive/fall22/cos302/files/syllabus.pdf

Problem 2 (35pts)
Debugging gradients is one of the important skills for machine learning. One powerful debugging tool is to
use finite differences to estimate the gradient of a function numerically. The idea of finite differences is simple:
estimate the rise versus run of the function using a small step size. This is kind of like when you take the limit in
the definition of the derivative, except you just don’t take the limit quite to zero. If f : Rd → R and ε > 0, then

∂

∂xi
f (x) ≈ 1

2ε
(f (x1, . . . , xi + ε , . . . , xd) − f (x1, . . . , xi − ε , . . . , xd) .

This is a “two-sided” finite differences estimate because it is moving up and down relative to x. In a typical
application, you might code this up using ε ≈ 10−4 or so. To estimate a gradient, you would loop from i = 1 . . . d
and evaluate all the partials.

(A) Implement a function finite_diff(func, x, epsilon) that takes a function func as an argu-
ment (which itself is of the form func(x) taking a vector and returning a scalar) and estimates the gradient
via finite differences as above. This will involve a loop over the entries of x that modifies the entries and
evaluates the function twice. The function finite_diff should return a vector that is the same size
as x.

(B) Consider the function f (x) = (c − Ax)T(c − Ax) for x ∈ R5 where

c =
#$$$$%
1
2
3

&''''(
A =

#$$$$%
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

&''''(
Implement this function and its gradient in Python as a function of x. The gradient function will require
that you use the differentiation identities as in Sec 5.5 of the book, just like you did in HW9; just now you’ll
also write it in code.

(C) Choose some non-zero vector for x and compare the result from your implementation to what you get from
the finite differences estimate. They should be similar but not exactly the same. (If you get weird values
that are all integers, make sure you’re using floating point numbers in your numpy arrays.)

(D) Now try automatic differentiation. Rather than import numpy as np do something like this:

import autograd.numpy as np
from autograd import grad

Then get a third estimate of the gradient by calling grad on your function from part (B) and evaluating
that at x.

2

Problem 3 (28pts) (A) Use autograd as in the previous problem to write a general-purpose function that
takes an update step for Newton’s method of minimization. The signature for this function should look like
newton_step(func, x). You’ll need to use grad to compute first and second derivatives within the
function.

(B) Consider the function f (x) = sin(x)/x, which is sometimes called the “sinc” function. Try minimizing this
function starting from several different points: x0 = 3.0, x0 = −4.0, and x0 = 0.5. You’ll need to write a
loop that iterates your newton_step function. You should not need to take many steps in the loop (not
more than ten). Explain what happens for the different initializations.

3

Problem 4 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

Changelog

• 1 December 2022 – Initial version.

4

https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

