Lecture 23: Artificial intelligence, machine learning, natural language processing, ...

- buzzwords, hype, real accomplishments, wishful thinking
 - big data, deep learning, neural networks, ...
- brief history
- examples
 - classification (spam detection)
 - prediction (future prices)
 - recommendation systems (Netflix, Amazon, Goodreads, ...)
 - games (chess, Go)
 - natural language processing (sentiment analysis, translation, generation)
- issues and concerns
 - fairness, bias
 - accountability and explainability
 - appropriate uses

- Beware: on this topic, I am even less of an expert than normal.
Revisionist history (non-expert perspective)

• 1950s, 1960s: naive optimism about artificial intelligence
 – checkers, chess, machine translation, theorem proving, speech recognition, image recognition, vision, ...
 – almost everything proved to be much harder than was thought

• 1980s, 1990s: expert or rule-based systems
 – domain experts create rules, computers apply them to make decisions
 – it's too hard to collect the rules, and there are too many exceptions
 – doesn't scale to large datasets or new problem domains

• 2010s: machine learning, big data, deep learning, ...
 – provide a "training set" with lots of examples correctly characterized
 – define "features" that might be relevant, or let program find them itself
 – write a program that "learns" from its successes and failures on the training data (basically by figuring out how to combine feature values)
 – turn it loose on new data

• 2020s: generative language models ???
 – near-human performance on some text understanding and generation tasks
 – GPT-3, DALL-E2, ...
Examples of ML applications (a tiny subset)

• classification
 – spam detection, digit recognition, optical character recognition, authorship, ...
 – image recognition, face recognition, ...

• prediction
 – house prices, stock prices, credit scoring, resume screening, ...
 – tumor probabilities, intensive care outcomes, ...

• recommendation systems
 – e.g., Netflix, Amazon, Goodreads, ...

• natural language processing (NLP)
 – language translation
 – text to speech; speech to text
 – sentiment analysis
 – text generation

• games
 – checkers, chess, Go
Types of learning algorithms

• supervised learning (labeled data)
 – teach the computer how to do something with training examples
 – then let it use its new-found knowledge to do it on new examples

• unsupervised learning (unlabeled data)
 – let the computer learn how to do something without training data
 – use this to find structure and patterns in data

• reinforcement learning
 – some kind of "real world" system to interact with
 – feedback on success or failure guides/teaches future behavior

• recommender systems
 – look for similarities in likes and dislikes / behaviors / ...
 – use that to predict future likes / behaviors
Prediction example: house prices

- only one feature here: square footage
- straight line? ("linear regression")
- some kind of curve?
Over- and under-fitting

- High bias (underfit)
 \[\theta_0 + \theta_1 x \]

- "Just right"
 \[\theta_0 + \theta_1 x + \theta_2 x^2 \]

- High variance (overfit)
 \[\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 \]
Clustering: learning from unlabeled data

- contrast with supervised learning
 - supervised learning:
 given a set of labels, fit a hypothesis to it
 - unsupervised learning:
 try and determine structure in the data
 clustering algorithm groups data together based on data features

- clustering is good for
 - market segmentation – group customers into different market segments
 - social network analysis – identify friend groups
 - topic analysis
 - authorship
Neural networks, deep learning

- simulate human brain structure with artificial neurons in simple connection patterns
Neural networks (from vas3k.com/blog/machine_learning)
GPT-3, ChatGPT: generative pre-trained transformers

- language models based on very large text corpus
- use deep learning to generate text that seems human-written
- models are proprietary
 - e.g., GPT-3 licensed by Microsoft

- ChatGPT is based on GPT-3 (chat.openai.com)
- tuned for conversational style
- can remember previous parts of conversation
- very new: became available ~Dec 1
ML / AI issues

• algorithmic fairness
 – results can't be better than training data
 – if that has implicit or explicit biases, results are biased
 – can we detect and eliminate bias?

• accountability and explainability
 – what is the algorithm really doing?
 – can its results be explained

• appropriate uses?
 – prison sentencing
 – drone strikes
 – weapon systems
 – resume evaluation
 – medical decisions
 – ...

• to learn more:
 https://fairmlbook.org
More AI/ML issues

• what if it gets too good at faking humans?
 – deep fakes
 – text generation
 – generating problem set solutions

• training data is likely to contain bias, toxic language, stereotypes (e.g., gender, race, ...), and other potentially harmful material