Lecture 16: Protocols

- precise rules that govern communication between two parties
- TCP/IP: the basic Internet protocols
- IP: Internet protocol (bottom level)
 - all packets shipped from network to network as IP packets
 - no guarantees on quality of service or reliability: "best effort"
 - each physical network has its own format for carrying IP packets
- TCP: transmission control protocol
 - creates a reliable 2-way data stream using IP errors are detected and corrected
 - most things we think of as "Internet" use TCP
- "application-level" protocols, mostly built from TCP
 - HTTP (web), SMTP (mail), SSH (secure login), FTP (file transfer), ...
- UDP: user datagram protocol
 - simple unreliable datagram protocol (errors not detected)
 - used in DNS, voice, video, ...

Packets

- packet: a sequence of bytes carrying information
 - usually over a network connection
- bytes have a specific sequence, format, organization
 - usually as specified in a protocol
- typical network packet includes
 - source (where it comes from)
 - destination (where it goes to)
 - size or length information (how big is the data part)
 - miscellaneous information (type, version, info to detect errors, ...)
 - the data itself ("payload")
- typical sizes range from
 - a few bytes
 - 150-1500 (Ethernet packets)
 - 100-65,000 (IP packets)

What's in an IP packet

a "header" that contains

- protocol version, type of packet, length of header, length of data
- fragmentation info in case it was broken into pieces
- time to live: maximum number of hops before packet is discarded each gateway decreases this by 1
- source & destination addresses (32 bits for IPv4, 128 bits for IPv6)
- checksum of header information
 redundant info to detect errors in header information only, not data itself
- etc.; about 20-40 bytes in header

actual data

- up to 64 KB of payload
- IPv4:

version	type	hdr len	total len	frag	TTL	source address	dest address	chk	data
---------	------	------------	--------------	------	-----	-------------------	-----------------	-----	------

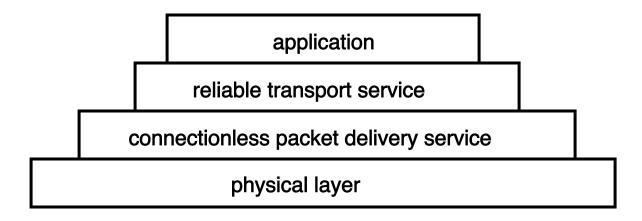
IP: Internet Protocol

- IP provides an unreliable connectionless packet delivery service
 - every packet has full source & destination addresses
 - every packet is independent of all others
- IP packets are datagrams
 - individually addressed packages, like postcards in the postal system
 "connectionless"
 - stateless: no memory from one packet to next
 each packet is independent of others, even if in sequence and going same place
 - unreliable: packets can be lost or duplicated ("best effort" delivery)
 - packets can be delivered out of order
 - contents can be wrong (though error rates are usually very low)
 - no speed control: packets can arrive too fast to be processed
 - limited size: long messages have to be split up and then reassembled
- higher level protocols use IP packets to carry information
- IP packets are carried on a wide variety of physical media

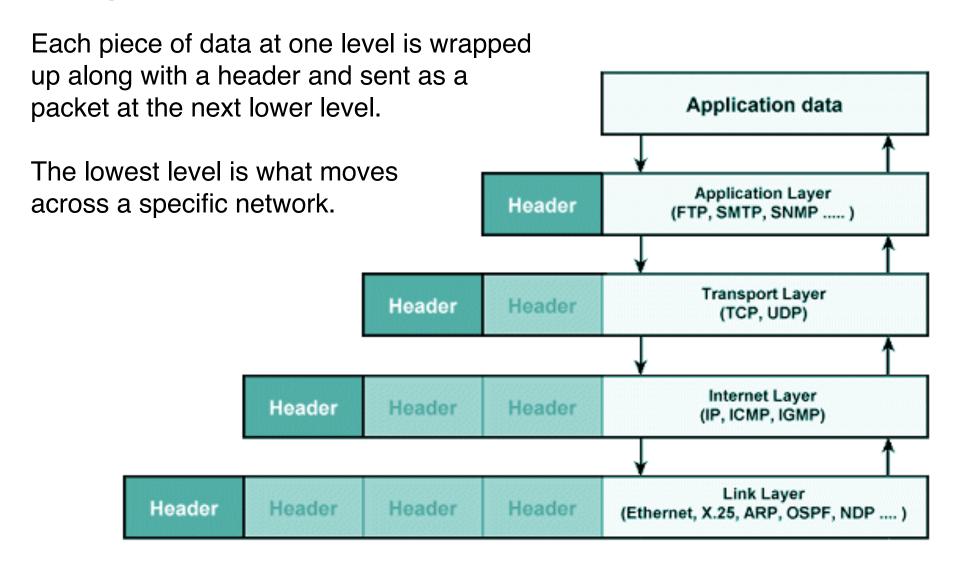
TCP: Transmission Control Protocol

- a reliable 2-way byte stream built with IP
- a TCP connection is established to a specific host
 - and a specific "port" at that host
- each port provides a specific service
 - SSH = 22, SMTP = 25, HTTP = 80, ...
- a message is broken into 1 or more segments
- each TCP segment has a header (source, destination, etc) + data
 - header includes checksum for error detection, and sequence number to preserve order and detect missing or duplicated packets
- each TCP segment is wrapped in an IP packet and sent
 - has to be positively acknowledged to ensure that it arrived safely otherwise, re-send it after a time interval
- TCP is the basis of most higher-level protocols

Higher level protocols

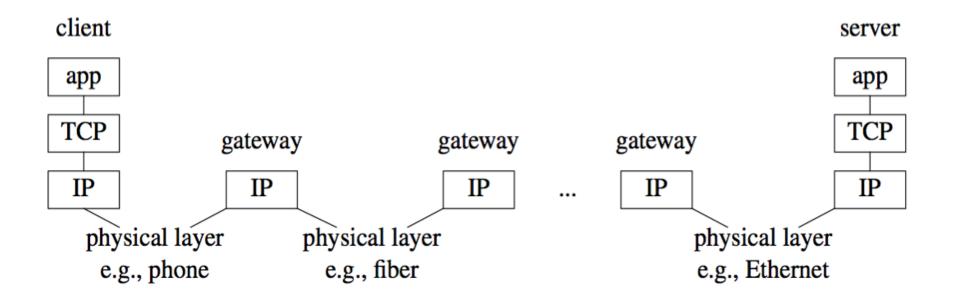

SSH: secure login

SMTP: mail transfer


HTTP: hypertext transfer => Web

protocol layering:

- a single protocol can't do everything
- higher-level protocols build elaborate operations out of simpler ones
- each layer uses only the services of the one directly below and provides the services expected by the layer above
- all communication is between peer levels: layer N destination receives exactly the object sent by layer N source



Encapsulation

http://www.technologyuk.net/the_internet/

How information flows

How things are connected

- local nets connected to local Internet Service Provider (ISP)
- these in turn connect to regional ISPs
- and then to larger ones like Comcast, Verizon, AT&T, ...
- traffic is exchanged at Internet exchanges (IXP)
 - large and small, formal and informal, profit and non-profit
- bandwidth (bit-carrying capacity) of connections is usually higher for larger ISPs
 - cable, DSL: maybe 10-100 Mbps (you to your ISP)
 - optical fiber: 100 Mbps and up (large carriers)

Coping with bandwidth limits

- data flows no faster than the slowest link
- limits to how much data can pass per unit time
 - no guarantees about packet delivery
 - no guarantees about bandwidth, delay or quality of service
 IP telephony is hard because voice traffic requires limited delay and jitter video is somewhat easier but needs a lot more bandwidth

caching

- save previous data so it doesn't have to be retrieved again
- · compression, encoding
 - to improve use of available bandwidth
 - don't send redundant or unnecessary information
 text, code, etc., can be compressed and recreated exactly
 music, pictures, movies are compressed with some information discarded

Internet Ideas

- packets versus circuits
 - different models (mail vs phone)
- names and addresses
 - what is a computer called, how to find it
- routing
 - how to get from here to there
- protocols and standards
 - Internet works because of IP as common mechanism higher level protocols all use IP specific hardware technologies carry IP packets
- layering
 - divide system into layers
 each of which provides services to next higher level
 while calling on service of next lower level
 - a way to organize and control complexity, hide details

Internet technical issues:

privacy & security are hard

- data passes through shared unregulated dispersed media and sites scattered over the whole world
- it's hard to control access & protect information along the way
- many network technologies (e.g., Ethernet, wireless) use broadcast encryption necessary to maintain privacy
- many mechanisms are not robust against intentional misuse
- it's easy to lie about who you are

service guarantees are hard

no assurance of reliable delivery, let alone of bandwidth, delay or jitter

some resources are running low

- IPv4 addresses are all assigned
- IPv6 (the next generation) uses 128-bit addresses acceptance growing, by necessity
- but it has handled exponential growth amazingly well