Lecture 4: Continued: Bits, bytes, binary numbers, and the representation of information

- computers represent, process, store, copy, and transmit everything as numbers
 - hence "digital computer"
- the numbers can represent anything
 - not just numbers that you might do arithmetic on
- the meaning depends on context
 - as well as what the numbers ultimately represent
 - e.g., numbers coming to your computer or phone from your wi-fi connection could be email, movies, music, documents, apps, Zoom meeting, ...

Some things are intrinsically discrete / digital

- another kind of conversion
 - letters are converted into numbers when you type on a keyboard
 - the letters are stored (a Word document), retrieved (File/Open...), processed (paper is revised), transmitted (submitted by email), printed on paper
- letters and other symbols are inherently discrete
- encoding them as numbers is just assigning a numeric value to each one, without any intrinsic meaning
- what letters and other symbols are included?
- how many digits/letter?
 - determined by how many symbols there are
 - how do we disambiguate if symbols have different lengths?
- how do we decide whose encoding to use?
- the representation is arbitrary
- but everyone has to agree on it
 - if they want to work together

ASCII: American Standard Code for Information Interchange

- an arbitrary but agreed-upon representation for USA
- widely used everywhere

32	space	33	1	34	"	35	#	36	\$	37	00	38	&	39	'
40	(41)	42	*	43	+	44	,	45	_	46		47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	<	61	=	62	>	63	?
64	0	65	А	66	В	67	С	68	D	69	Е	70	F	71	G
72	Н	73	Ι	74	J	75	Κ	76	\mathbf{L}	77	М	78	Ν	79	0
80	Ρ	81	Q	82	R	83	S	84	Т	85	U	86	V	87	W
88	Х	89	Y	90	Z	91	[92	\mathbf{i}	93]	94	^	95	_
96	`	97	а	98	b	99	С	100	d	101	е	102	f	103	g
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	0
112	р	113	q	114	r	115	S	116	t	117	u	118	v	119	W
120	х	121	У	122	Z	123	{	124		125	}	126	~	127	del
000	1000	0 ~-		- 00	0 1	0001		0001	001	10 "	0.0	0101	∩ 1		
000	00010000 space 00010001 ! 00010010 " 00010101 #														

Hexadecimal notation

- binary numbers are bulky
- hexadecimal notation is a shorthand
- it combines 4 bits into a single digit, written in base 16
 a more compact representation of the same information
- hex uses the symbols A B C D E F for the digits 10 .. 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

0	0000	1	0001	2	0010	3	0011
4	0100	5	0101	6	0110	7	0111
8	1000	9	1001	Α	1010	В	1011
С	1100	D	1101	E	1110	F	1111

Decimal, binary, hex

dec	bin	hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

ASCII, using hexadecimal numbers

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	ΗT	LF	VT	FF	CR	SO	SI
1	DLE	DC 1	DC2	DC3	DC4	NAK	SYN	ЕТΒ	CAN	ΕM	SUB	ESC	FS	GS	RS	US
2	SPC		11	#	\$	%	3	I	()	*	+	,	—	•	1
3	0	1	2	3	4	5	6	7	8	9	•	•	<	=	>	?
4	@	A	В	С	D	Ε	F	G	H		J	Κ	L	Μ	Ν	0
5	Ρ	Q	R	S	Τ	U	V	Ш	X	Y	Ζ	Γ	١]	^	_
6	`	а	b	C	d	е	f	g	h	Ī	j	k	I	m	n	0
7	р	q	r	S	t	u	U	W	X	y	Ζ	{		}	~	DEL

2C80

Coptic

Coptic (unicode.org)

j.	2C8	2C9	2CA	2CB	2CC	2CD	2CE	2CF
0	<u>ک</u>	θ	П 2046	0	₽	L .	Ψ	108
1	<u>ک</u>	Ө 20 И	П 2041	(1)	₽ 2001	L .	Ψ	01
2	B	l 20 50	P	.		6	J	В 107
3	B	l 2010	P	ب	4	6	J	6
4	Г	K	C	<u>د</u>	3	i	K JOIN	
5	Г	K zzm	C	Q 2005	3	i	ł.	
6	<u>Д</u> 108	λ ××	T	3004	1	پ	df.	
7	A.	λ ∞₽	T	1000	1	<u>۲</u>	CC	
8	6	M	Y	2	2	1	P	
9	6	M	Y 2049	2.	S	11 2009	*	//
A	5	N	ф	2004	9	4	OC	/. 2016
в	5	N	ф	200	9	<u>æ</u>	200	2.10
с	Z	3	X	m	3	5	20	//
D	2	X 200	X	un xino	3	б зала	M	5
E	H	0	¥ 2046	***	<i>P</i>		M	4- 2/1
F	н	0	*	H-	P	E 100F		104

dec	bin	hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Ă
11	1011	B
12	1100	c
13	1101	D
14	1110	Ē
15	1111	F
15		•

2CFF

Emoji

	1F60	1F61	1F62	1F63	1F64	Ι.				
0		•	۲	۲	E	8	1F608	1F618	1F628	
1	1F600	1F610	1F620	1F630	1F640	9	٢	\bigcirc	8	17638
2	1F601	1F611	1F621	1F631	1F641	A	1F609	1F619	1F629	1F639
3	1F602	1F612	1F622	1F632	1F642	в	1F60A	1F61A	1F62A	1F63A
4	1F603	1F613	1F623	1F633	1F643	с	1F60B	1F61B	1F628	1F638
5	1F604	1F614	1F624	1F634	1F644	D	1F60C	1F61C	1F62C	1F63C
6	1F605	1F615	1F625	1F635	1F645	E	1F60D	1F61D	1F62D	1F63D
7	1F606	1F616	1F626	1F636	1F646	F	1F60E	1F61E	1F62E	1F63E
	1F607	1F617	1F627	1F637	1F647		1F60F	1F61F	1F62F	1F63F

12

1F648

۶Ð

1F649

쪷

1F64A

ß

1F648

Ë,

1F64C

ø

1F64D

Ø

1F64E

1F64F

Color

• TV & computer screens use Red-Green-Blue (RGB) model

- each color is a combination of red, green, blue components
 R+G = yellow, R+B = magenta, B+G = cyan, R+G+B = white
- for computers, color of a pixel is usually specified by three numbers giving amount of each color, on a scale of 0 to 255
- this is often expressed in hexadecimal so the three components can be specified separately (in effect, as bit patterns)
 - 000000 is black, FFFFFF is white
- printers, etc., use cyan-magenta-yellow[-black] (CMY[K])

Approximations using 2ⁿ

2^24 = 2^4 * 2^20 = 16 * 1,000,000 (16,777,216)

 $2^{64} = 2^{4} * 2^{60}$ = 16 * 1,000,000,000,000,000,000 (18,446,744,073,709,551,616)

A very important idea

- number of items and number of digits are tightly related:
 - one determines the other
 - maximum number of different items = base number of digits
 - e.g., 9-digit SSN: $10^9 = 1$ billion possible numbers
 - e.g., to represent up to 100 "characters": 2 digits is enough
 - but for 1000 characters, we need 3 digits
 - the same for bits: 9 bits can represent up to $2^9 = 512$ items
- interpretation depends on context
 - without knowing that, we can only guess what numbers mean

Things to remember

- digital devices represent everything as numbers
 - discrete values, not continuous or infinitely precise
- all modern digital devices use binary numbers (base 2)
 - instead of decimal (base 10)
- it's all bits at the bottom
 - a bit is a "binary digit", that is, a number that is either 0 or 1
 - computers ultimately represent and process everything as bits
- groups of bits represent larger things
 - numbers, letters, words, names, pictures, sounds, instructions, ...
 - the interpretation of a group of bits depends on their context
 - the representation is arbitrary; standards (often) define what it is
- the number of digits used in the representation determines how many different things can be represented
 - number of values = base ^{number of digits}
 - e.g., 10², 2¹⁰