COS 109 basic info

MASKS REQUIRED for now

- Brian Kernighan
 bwk@cs.princeton.edu www.cs.princeton.edu/~bwk
 office hours: right after class or make an appointment
- Archie McKenzie, archiem@princeton.edu, Wed & Sun 6-9
- web site: www.cs.princeton.edu/courses/archive/fall22/cos109 (we won't use Canvas very much)
- please fill out the survey (link is also on web site)
 https://forms.gle/cZYdW7xSdPMi3RfP6
- first problem set is due midnight Wednesday Sep 14
- first lab is due midnight Sunday Sep 18 (both are posted on course web page)

House rules

- turn off your phone and laptop
 - it helps to keep you and me engaged
- let me know if there's anything I can do to make this work better
- COVID precautions
 - for now, please be vaccinated, boosted, masked, socially distanced
- ask questions / make comments / ... about anything any time
- questions so far?

Administrivia (check the web page for updates!)

- notes will be posted online
 - but not everything will be in them or in the textbook
- readings: ~ 1 hour/week, before class
 - textbook readings are important; most others are cultural enrichment
- 8 problem sets: ~ 1-2 hours each
 - posted by Wednesday, due following Wednesday by midnight
- 8 labs: ~ 2-3 hours each, plus reading to prepare
 - posted by Sunday, due following Sunday by midnight
 - do the labs on your own, any time
- open-book take-home midterm during midterm week
- open-book take-home final exam during December exam period
- grading (approximately):
 20% problem sets + 20% labs + 20% midterm + 35% final + 5% participation
- regular attendance at lectures is required; participation helps

Textbook

- 2nd edition is definitely preferable
 - get the paperback version!
- 1st edition is ok

good supplementary reading if you're interested in privacy and security =>

Course outline

- hardware (3-4 weeks)
 - how computers represent and process information
 - what's inside a computer, how it works, how it's built
- software (3-4 weeks)
 - how we tell computers how to do things
 - a very gentle introduction to programming in Python
- communications + data (3-4 weeks)
 - how the Internet and the Web work
 - machine learning, artificial intelligence
 - threats and defenses: privacy, security, cryptography
- along the way
 - current events, history, QR / QCR, ...

Hardware: tangible devices and gadgets

- how computers represent and process information
 - universal digital representation of information:
 everything is represented as numbers
 - bits, bytes, binary
- a computer is a universal digital processor
 - it stores data and instructions in the same memory
 - the instructions are numbers
 - it's a general purpose machine:
 change the numbers and it does something different
 - your phone is a computer
- hardware has been getting exponentially smaller, cheaper, faster for ~60 years

Software: telling computers what to do

algorithms

- precise sequences of steps to perform various tasks
- what's possible, what's feasible, what's efficient some problems are intrinsically very hard (we think)

programs and programming

- implementation of algorithms to be run on a computer
- programming languages: how to express the steps
- real programs: operating systems and applications

software intellectual property issues

patents, copyrights, standards, ...

Communications: computers talking to each other

- the Internet is a universal digital network
 - depends on protocols, standards, agreements, cooperation
- we can easily communicate with people anywhere
 - we are visible to and accessible by strangers everywhere
- information passes through many sites
 - where it can be inspected, modified, blocked, slowed down, ...
- personal privacy and security are at risk
 - tracking, data aggregation, surveillance (government and commercial)
 - phishing, identity theft, ...
 - viruses, worms, bots, hijacking, trolls, disinformation, ...
- everything on the Internet is vulnerable
 - cyber attacks
 - Internet of Things

It's not just computers

- computers and networking are spreading into devices
- devices are increasingly powerful
- devices and systems are increasingly connected to the Internet: "Internet of Things"

```
phones
games, toys
consumer electronics: Alexa et al, smart TVs, Fitbit, Ring, Nest, ...
cars (self-driving or not)
planes
medical systems and devices
infrastructure: phones, power, transportation, manufacturing, ...
weapons
...
```

Privacy

- data about shopping, banking, location, taxes, ..., is all digital
 - public records are increasingly digital too
 e.g., election contributions often include home addresses
- data is easy to collect, store, copy, analyze, sell
- technically, it's impossible to control access
 - we're vulnerable to bugs, incompetence, stupidity, theft
- legally, in USA, we don't control data about ourselves
 - anyone can collect and sell anything about all of us (and they do)
 - laws are different in different countries (e.g., European Union GDPR)

Security

- the universal network makes us vulnerable to strangers
 - the Internet has no geography
 - it's easy to lie about who you are and where you are
 - the bad guys are usually far away
- general-purpose computers are everywhere
 - web pages and email can contain programs
 - phone apps often contain spyware and malware
- leads to spam, phishing, viruses, spyware, ransomware, ...
 - tracking and surveillance by governments and businesses
 - theft by criminals everywhere
- it's impossible to control such programs
 - and to eliminate tracking and surveillance, trolling, fake news, influencing

Goals of the course

- understanding how digital systems work
 - hardware, software, communications
 - representation, processing, storage, transmission of information
 - principles, not just today's details and buzzwords
 - a handful of useful skills
- some sense of the past and possible futures
 - history, trends, potential, intrinsic limitations, tradeoffs
- some appreciation of computer science as a discipline
 - great ideas, algorithms, capabilities and limits of computers
 - and its usefulness in other academic fields
- useful QCR
 - numeracy: reasoning, estimation, assessing numbers, ...
 - judgment: do the numbers make sense? are they plausible?
 - enough programming that it's not a mystery
- intelligent skepticism about technology