

Datacenter Networks

Lecture 22

COS 461: Computer Networks

Kyle Jamieson

Networking Case Studies

Cloud Computing

Cloud Computing

- · Demand-elastic resources
 - Expand & contract resources as demand dictates
 - · Pay-per-use; Infrastructure on demand

- Multi-tenancy
 - Multiple independent users
 - Security and resource isolation
 - Amortize the (shared) infrastructure cost
 - Flexible service management

Cloud Service Models

Software as a Service

- Provider licenses applications to users as a service
- e.g., customer relationship management, e-mail, ..
- Avoid costs of installation, maintenance, patches

Platform as a Service

- Provider offers platform for building applications
- E.g., Google's App-Engine, Amazon 53 storage
- Avoid worrying about scalability of platform

Cloud Service Models

• Infrastructure as a Service

- Provider offers raw computing, storage, and network
- E.g., Amazon's Elastic Computing Cloud (EC2)
- Avoid buying servers & estimating resource needs

Enabling Technology: Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- Recently: Lighter-weight virtualization through "containers"
- Can migrate from one machine to another
- Autoscale by spinning up/down VMs & containers

Multi-Tier Applications

- Applications consist of tasks
 - -Many separate components
 - -Running on different machines
- Commodity computers
 - -Many general-purpose computers
 - -Not one big mainframe
 - -Easier scaling

Componentization leads to different types of network traffic

"North-South traffic"

- Traffic to/from external clients (outside of datacenter)
- Handled by front-end (web) servers, mid-tier application servers, and back-end databases
- Traffic patterns fairly stable, though diurnal variations

"East-West traffic"

- Traffic within data-parallel computations within datacenter (e.g. "Partition/Aggregate" programs like Map Reduce)
- Data in distributed storage, partitions transferred to compute nodes, results joined at aggregation points, written back to storage
- Traffic may shift on small timescales (e.g., minutes)

North-South Traffic

East-West Traffic

Distributed Storage

Map Tasks Reduce Tasks Distributed Storage

Datacenter Network

Virtual Switch in Server

(could be TOR)

Top-of-Rack Architecture

- Rack of servers
 - Commodity servers
 - And top-of-rack switch
- Modular design
 - Preconfigured racks
 - Power, network, and storage cabling

Aggregate to the Next Level

Datacenter Network Topology

Capacity Mismatch?

"Oversubscription":

Much more demand vs. supply for higher links

Capacity Mismatch!

Particularly bad for east-west traffic

Layer 2 vs. Layer 3?

Ethernet switching (layer 2)

- Cheaper switch equipment
- Fixed addresses and auto-configuration
- Seamless mobility, migration, and failover

IP routing (layer 3)

- Scalability through hierarchical addressing
- Efficiency through shortest-path routing
- Multipath routing through equal-cost multipath

Datacenter Routing

New datacenter networking problems have emerged...

Network Incast

- Incast arises from synchronized parallel requests
 - Web server sends out parallel request ("which friends of Johnny are online?"
 - Nodes reply at same time, cause traffic burst
 - Replies potentially exceed switch's buffer, causing drops

Network Incast

Solutions mitigating network incast...

- A. Reduce TCP's min RTO (often use 200ms >> DC RTT)
- B. Increase buffer size
- C. Add small randomized delay at node before reply
- D. Use ECN with instantaneous queue size
- E. All of above

Network Bandwidth Measurements

 Bisection bandwidth: Split nodes into two halves such that bandwidth between the halves is minimal, that is the bisection b/w

• Full bisection bandwidth: $\frac{1}{2}$ of the nodes can communicate simultaneously with the other $\frac{1}{2}$

Full Bisection Bandwidth

- Eliminate oversubscription?
 - Enter FatTrees
 - Provide static capacity
 - Heterogeneous Links
 - 1-10 GB in racks
 40-100GB to core

Full Bisection Bandwidth

- But "scale up" link capacity has limits
- New scale out architectures
 - Build multi-stage FatTree out of k-port switches
 - k/2 ports up, k/2 down
 - Supports k³/4 hosts: 48 ports, 27,648 hosts

Full Bisection Bandwidth Not Sufficient

- · Must choose good paths for full bisectional throughput
- Load-agnostic routing
 - Use ECMP across multiple potential paths
 - Can collide, but ephemeral? Not if long-lived, large elephants
- Load-aware routing
 - Centralized flow scheduling, end-host congestion feedback, switch local algorithms

Conclusion

- Cloud computing
 - Major trend in IT industry
 - Today's equivalent of factories
- Datacenter networking
 - Regular topologies interconnecting VMs
 - Mix of Ethernet and IP networking
- Modular, multi-tier applications
 - New ways of building applications
 - New performance challenges