

Security I: Concepts and Applications Lecture 20 COS 461: Computer Networks Kyle Jamieson

Internet's Design: Insecure

- Designed for simplicity
- "On by default" design
- Readily available zombie machines
- Attacks look like normal traffic
- Internet's federated operation obstructs cooperation for diagnosis/mitigation

Eavesdropping - Message Interception (Attack on Confidentiality)

- Unauthorized access to information
- Packet sniffers and wiretappers (e.g. tcpdump)
- Illicit copying of files and programs

Integrity Attack - Tampering

- Stop the flow of the message
- Delay and optionally modify the message
- Release the message again

Authenticity Attack - Fabrication

- Unauthorized assumption of other's identity
- Generate and distribute objects under identity

Attack on Availability

- Destroy hardware (cutting fiber) or software
- Modify software in a subtle way
- Corrupt packets in transit

- Blatant denial of service (DoS):
 - Crashing the server
 - Overwhelm the server (use up its resource)

Basic Security Properties

- Confidentiality: Concealment of information or resources
- Authenticity: Identification & assurance of origin of info
- Integrity: Trustworthiness of data/resources; preventing improper/unauthorized changes
- Availability: Ability to use desired information/resource
- Non-repudiation:
 - Offer of evidence that a party indeed is sender or a receiver of certain information
 - Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

Security protocols at many layers

- Application layer
 - E-mail: PGP, using a web-of-trust
 - Web: HTTP-S, using a certificate hierarchy
- Transport layer
 - Transport Layer Security/ Secure Socket Layer
- Network layer
 - IP Sec
- Network infrastructure
 - DNS-Sec and BGP-Sec

Introduction to Cryptography

Cryptographic Algorithms: Goal

- One-way functions: cryptographic hash
 - Easy to compute hash
 - Hard to invert
- "Trapdoor" functions: encryption/signatures
 - Given ciphertext alone, hard to compute plaintext (invert)
 - Given ciphertext and key (the "trapdoor"), relatively easy to compute plaintext
 - "Level" of security often based on "length" of key

Encryption and MAC/Signatures

Confidentiality (Encryption)

Sender:

- Compute C = Enc_K(M)
- Send C

Receiver:

Recover M = Dec_K(C)

Auth/Integrity (MAC / Signature)

Sender:

- Compute s = Sig_K(Hash (M))
- Send <M, s>

Receiver:

- Compute s' = Ver_K(Hash (M))
- Check s' == s

These are simplified forms of the actual algorithms

Symmetric vs. Asymmetric Crypto a.k.a. Secret vs. Public Key Crypto

- Symmetric crypto (all crypto pre 1970s)
 - Sender and recipient share a common key
 - All classical encryption algorithms are private-key
 - Dual use: confidentiality or authentication/integrity
 - Encryption vs. msg authentication code (MAC)
- Public-key crypto
 - (Public, private) key associated w/ea. entity ("Alice")
 - Anybody can encrypt to Alice, anybody can verify Alice's message
 - Only Alice can decrypt, only Alice can "sign"
 - Developed to address "key distribution" problem and "digital signatures" (w/o prior establishment)

Why still both?

- Symmetric Pros and Cons
 - Simple and very fast (1000-10000x faster than asymmetric)
 - Must agree/distribute the key beforehand
 - AES/CBC (256-bit) → 80 MB/s (for 2048 bits, .003 ms)
- Public Key Pros and Cons
 - Easier key pre-distro.: "Public Key Infrastructure" (PKI)
 - Much slower
 - 2048-RSA \rightarrow 6.1ms Decrypt, 0.16ms Encrypt
- Common "engineering" approach:
 - Best of both worlds via "hybrid" scheme: Use public key to distribute a new random "session" key b/w sender and recipient, then symmetric crypto for remainder of session

Email Security: Pretty Good Privacy (PGP)

Sender and Receiver Keys

- If the receiver knows the sender's public key
 - Sender authentication
 - Sender non-repudiation

- If the sender knows the receiver's public key
 - Confidentiality
 - Receiver authentication

Sending an E-Mail Securely

- Sender digitally signs the message
 Using the sender's private key
- Sender encrypts the data
 - Using a one-time session key
 - Sending the session key, encrypted with the receiver's public key
- Sender converts to an ASCII format
 - Converting the message to base64 encoding
 - (Email messages must be sent in ASCII)

Public Key Certificate

- Binding between identity and a public key
 - "Identity" is, for example, an e-mail address
 - "Binding" ensured using a digital signature
- Contents of a certificate
 - Identity of the entity being certified
 - Public key of the entity being certified
 - Identity of the signer
 - Digital signature
 - Digital signature algorithm id

Web of Trust for PGP

- Decentralized solution
 - Protection against state actor intrusion
 - No central certificate authorities
- Customized solution
 - Individual decides whom to trust, and how much
 - Multiple certificates with different confidence levels
- Key-signing parties!
 - Collect and provide public keys in person
 - Sign other's keys, and get your key signed by others

HTTP Security

HTTP Threat Model

- Eavesdropper
 - Listening on conversation (confidentiality)
- Man-in-the-middle
 - Modifying content (integrity)
- Impersonation
 - Bogus website (authentication, confidentiality)

HTTP-S: Securing HTTP

- HTTP sits on top of secure channel (SSL/TLS)
 https:// vs. http://
 TCP port 443 vs. 80
- All (HTTP) bytes encrypted and authenticated

 No change to HTTP itself!
- Where to get the key???

Learning a Valid Public Key

••• ⊘

• What is that lock?

- Securely binds domain name to public key (PK)
 - If PK is authenticated, then any message signed by that PK cannot be forged by non-authorized party
- Believable only if you trust the attesting body
 - Bootstrapping problem: Who to trust, and how to tell if this message is actually from them?

Hierarchical Public Key Infrastructure

- Public key certificate
 - Binding between identity and a public key
 - "Identity" is, for example, a domain name
 - Digital signature to ensure integrity
- Certificate authority
 - Issues public key certificates and verifies identities
 - Trusted parties (e.g., VeriSign, GoDaddy, Comodo)
 - Preconfigured certificates in Web browsers

Public Key Certificate

C 🕼 🔽	https://www.wellsfargo.com			♥ ☆
WELLS	Site Information for www.wellsfargo.com		🗟 Enroll	Customer Service
Personal	Connection secure Certificate issued to: Wells Fargo & Company			Finar
Banking and C	2 ₅ Permissions	it	Wealth	n Management
	You have not granted this site any special permissions.	19	assistance	e and services. Lea
	Clear Cookies and Site Data			
💩 View You	r Accounts			
Username			-	Innovat
				Convoni
Password		2		Conveni
			E	Building better e
Save us	sername	12	-	earn More
0.0			den la	Curriere ,

Certificate

www.wellsfargo.com		DigiCert Global CA G2	DigiCert Global Root G2
Subject Name			
Business Category F		Organization	
Inc. Country			
Inc. State/Province D		e	
Serial Number	251212		
Country	US		
State/Province	Californ	ia	
Locality	San Fra	ncisco	
Organization	Wells Fa	argo & Company	
Organizational Unit	DCG-PS	G	
Common Name	www.we	llsfargo.com	
Issuer Name			
Country US			
Organization Dig		t Inc	
Common Name DigiCert		t Global CA G2	
Validity			
Not Before	2/7/201	9, 7:00:00 PM (Eastern Daylight Time)	
Not After 2/8/2		1, 7:00:00 AM (Eastern Daylight Time)	
Subject Alt Names DNS Name www.		ellsfargo.com	

Certificate

www.wellsfargo.com		DigiCert Global CA G2	DigiCert Global Root G2		
Subject Name					
Country	US				
Organization Digi					
Common Name	DigiCert	t Global CA G2			
locuer Name					
Country	US				
Organization Digi					
Organizational Unit www.dic		picert.com			
Common Name	DigiCert	Global Root G2			
Common Name	Digitotit				
Validity	. <u></u>				
Not Before 8/1/2013		3, 8:00:00 AM (Eastern Daylight Time)			
Not After 8/1/202		8, 8:00:00 AM (Eastern Daylight Time)			
Public Key Info					
Algorithm RS					
Key Size	2048				
Exponent 65537					
Modulus	D3:48:7	C:BE:F3:05:86:5D:5B:D5:2F:85:4E:4B:E0:86:AD:1	15:AC:61:CF:5B:AF:3E:6A:0A:47:FB:9A:76:91:60:0		
Miscellaneous					
Serial Number 0C:8E:E		0:C9:0D:6A:89:15:88:04:06:1E:E2:41:F9:AF			
Signature Algorithm SHA-2		-256 with RSA Encryption			
Version	3				
Download	PEM (ce	ert) PEM (chain)			

Transport Layer Security (TLS)

Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape

TLS Handshake Protocol

- Send new random value, list of supported ciphers
- Send pre-secret, encrypted under PK

Send new random value, digital certificate with PK

- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

TLS Record Protocol

- Messages from application layer are:
 - Fragmented or coalesced into blocks
 - Optionally compressed
 - Integrity-protected using an HMAC
 - Encrypted using symmetric-key cipher
 - Passed to the transport layer (usually TCP)
- Sequence #s on record-protocol messages
 Prevents replays and reorderings of messages

Comments on HTTPS

- HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content
- Symmetric-key crypto after public-key ops

 Handshake protocol using public key crypto
 - Symmetric-key crypto much faster (100-1000x)
- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once
 - Adversary can't successfully drop or replay packets

IP Security

IP Security

- There are range of app-specific security mechanisms
 - eg. TLS/HTTPS, S/MIME, PGP, Kerberos, ...
- But security concerns that cut across protocol layers
- Implement by the network for all applications?

Enter IPSec!

IPSec

- General IP Security framework
- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

IPSec Uses

Benefits of IPSec

- If in a firewall/router:
 - Strong security to all traffic crossing perimeter
 - Resistant to bypass

- Below transport layer
 - Transparent to applications
 - Can be transparent to end users

• Can provide security for individual users

IP Security Architecture

Specification quite complex

 Mandatory in IPv6, optional in IPv4

- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - MAC over most header fields and packet body
 - Anti-replay protection
 - Encapsulating Security Payload (ESP)
 - These properties, plus confidentiality

Encapsulating Security Payload (ESP)

- Transport mode: Data encrypted, but not header
 - After all, network headers needed for routing!
 - Can still do traffic analysis, but is efficient
 - Good for host-to-host traffic

- Tunnel mode ("IP-in-IP")
 - Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security

Replay Protection is Hard

- Goal: Eavesdropper can't capture encrypted packet and duplicate later
 - Easy with TLS/HTTP on TCP: Reliable byte stream
 - But IP Sec at packet layer; transport may not be reliable
- IPSec solution: Sliding window on sequence #'s
 - All IPSec packets have a 64-bit sequence number
 - Receiver keeps track of which seqno's seen before
 - [latest window + 1 , latest]; window ~64 packets
 - Accept packet if
 - seqno > latest (and update latest)
 - Within window but has not been seen before
 - If reliable, could remember last, and accept iff last + 1

Conclusions

- Security at many layers
 - Application, transport, and network layers
 - Customized to the properties and requirements
- Exchanging keys
 - Public key certificates
 - Certificate authorities vs. Web of trust
- Next time
 - Network security: DNS, BGP