

Wireless Networks: ALOHANET, MACA

COS 461: Computer Networks
Lecture 17
Kyle Jamieson

Wireless is increasingly prevalent

- Health and Fitness
- Virtual Reality
- UAVs
- Internet of Things
 Sensors

Vehicular Networks

Next demand driver: Billions of Wireless devices

Wireless Links

- Interference / bit errors
 - More sources of corruption vs wired
- Multipath propagation
 - Signal does not travel in a straight line
- (Often) a broadcast medium
 - All traffic to everyone nearby
- Power trade-offs
 - Important for mobile, battery-powered devices

Wireless Links: High Bit Error Rate

- Decreasing signal strength
 - Disperses as it travels greater distance
 - Attenuates as it passes through matter

Wireless Links: High Bit Error Rate

- Interference from other sources
 - Radio sources in same frequency band
 - E.g., 2.4 GHz wireless phone interferes with 802.11b wireless LAN
 - Electromagnetic noise (e.g., microwave oven)

Wireless Links: High Bit Error Rate

- Multi-path propagation
 - Electromagnetic waves reflect off objects
 - Taking many paths of different lengths
 - Causing blurring of signal at the receiver

Dealing With Bit Errors

- Wireless vs. wired links
 - Wired: most loss is due to queuing congestion
 - Wireless: higher, time-varying bit-error rate
- Dealing with high bit-error rates
 - Sender could increase transmission power
 - More interference with other senders
 - Stronger error detection and recovery
 - More powerful error detection/correction codes
 - Link-layer retransmission of corrupted frames

Wireless Broadcast: Hidden Terminals

- Wired broadcast links
 - E.g., Ethernet bridging, in wired LANs
 - All nodes receive transmissions from all other nodes

Wireless broadcast: hidden terminal problem

- · A and B hear each other
- · B and C hear each other
- · But, A and C do not

So, A and C are unaware of their interference at B

Wireless Broadcast and Interference

• Interference matters at the receiver

Wi-Fi: 802.11 Wireless LANs

Channels and Association

- Multiple channels at different frequencies
 - Network administrator chooses frequency for AP
 - Interference if channel is same as neighboring AP

Channels and Association

- Multiple channels at different frequencies
 - Network administrator chooses frequency for AP
 - Interference if channel is same as neighboring AP
- Access points send periodic beacon frames
 - Containing AP's name (SSID) and MAC address
 - Host scans channels, listening for beacon frames
 - Host selects an access point: association request/response protocol between host and AP

Mobility Within the Same Subnet

- H1 remains in same IP subnet
 - IP address of the host can remain same
 - Ongoing data transfers can continue uninterrupted
- H1 recognizes the need to change
 - H1 detects a weakening signal
 - Starts scanning for stronger one
- Changes APs with same SSID
 - H1 disassociates from one
 - And associates with other
- Switch learns new location
 - Self-learning mechanism

Medium access: a Timeline

ALOHAnet: Context

- · Norm Abramson, 1970 at the University of Hawaii
 - Seven campuses, on four islands
 - Wanted to connect campus terminals and mainframe

- Telephone costs high, so built a packet radio

network

NIIHAU . Kekah	Караа				
Puuwai KA	Lihue	line.	7165		
, KA	Haleiwa	Laie OAHU			
	Waialua	Kaneohe			
	Pearl Ci	Honolulu Kalai	ipapa MOLOKAI		
		Maunaloa Kaun	MOLOKAI	10	
		LANAI	Lahaina La Kahului		
		Lanai Ci	2 1 1 1 1 1 1	Hana MAUI	
		KAHOOL	AWE 10023		
				Pt_Hawi	
				Honokaa	
				Wainlea	
			(ilo
	Principal Islands	of	Kailua	Pe	hoa Cape
	HAWAII SCALE 1:5,000,000		Captain Co	+ Mauna Loa 13677	Kumukahi
Albers equal area pro	jection, standard parallels 8°N a	nd 18°N, central meridia	in 157°W	Pahala	
			HAWA		
				Ka Lae	

Medium Access Control: "Unslotted ALOHA"

- Suppose: Chance packet begins in time interval Δt is $\frac{1}{1} \times \Delta t$
 - Nsenders in total, send frames of time duration 1
- Then: A frames/sec aggregate rate from all Nsenders
 - Individual rate N/N for each sender

Unslotted ALOHA: Performance

Suppose some node i is transmitting; let's focus on i's frame

- I. Others send in $[t_0-1, t_0]$: overlap *i*'s frame start \rightarrow collision II. Others send in $[t_0, t_0+1]$: overlap *i*'s frame end \rightarrow collision III. Otherwise, no collision, node *i*'s frame is delivered
- Therefore, vulnerable period of length 2 around i's frame

Unslotted ALOHA: Performance

• What's the chance no one else sends in the vulnerable period (length 2)? 2λ

Pr(no send from *one* node in 2) =
$$1 - \frac{2\lambda}{N}$$

Pr(no send at all in 2) =
$$\left(1 - \frac{2\lambda}{N}\right)^{N-1}$$

$$\lim_{N\to\infty} \left(1 - \frac{2\lambda}{N}\right)^{N-1} \to e^{-2\lambda}$$

Unslotted ALOHA: Utilization

• <u>Utilization</u>: For what fraction of the time is there a non-colliding transmission present on the medium?

- Recall, A is the total rate from all senders
- So, utilization = $\lambda \times Pr(no other transmission in 2)$ = $\lambda e^{-2\lambda}$

Medium Access Control Refinement: "Slotted ALOHA"

 Divide time into slots of duration 1, synchronize so that nodes transmit only in a slot

- Each of **Nnodes** transmits w/prob. p in each slot
- So total transmission rate $\Lambda = N \times p$
- As before, if exactly one transmission in slot, can receive; if two or more in slot, no one can receive (collision)

Slotted ALOHA: Utilization

(N nodes, each transmits with probability p in each slot)

What is the utilization as a function of aggregate rate $\lambda = N \times p$?

- Pr[A node is successful in a slot] = $p(1-p)^{N-1}$
- Pr[Success in a slot] = $Np(1-p)^{N-1}$

$$\Pr(\text{success}) = \lambda \left(1 - \frac{\lambda}{N}\right)^{N-1}$$

$$\lim_{N\to\infty} \lambda \left(1 - \frac{\lambda}{N}\right)^{N-1} = \lambda e^{-\lambda}$$

ALOHA Medium Access Control: <u>Timeslots</u> Double Throughput!

Just by forcing nodes to transmit on slot boundaries, we double peak medium utilization!

Medium access: Timeline

Assumptions

- · Uniform, circular radio propagation
 - Fixed transmit power, all same ranges
 - Equal interference and communication ranges

Radios modeled as "conditionally connected" wires based on circular radio ranges

• <u>Def'n:</u> Node is connected to other node *iff* other located within circular radio range:

MACA: Goals

· Goals

- Fairness in sharing of medium
- Efficiency (total bandwidth achieved)
- Reliability of data transfer at MAC layer

When Does Listen-Before-Talk *Carrier Sense* (CS) Work Well?

- · Two pairs far away from each other
 - Neither sender carrier-senses the other

B transmits to A, while D transmits to C.

When Does CS Work Well?

Both transmitters can carrier sense each other

But what about cases in between these extremes?

B transmits to A, D transmits to C, taking turns.

Hidden Terminal Problem

$$A \longrightarrow X \longleftarrow C$$

- C can't hear A, so C will transmit while A transmits
 - Result: Collision at B
- Carrier Sense insufficient to detect all transmissions on wireless networks!
- Key insight: Collisions are spatially located at receiver

Exposed Terminal Problem

- If C transmits, does it cause a collision at A?
 - Yet C cannot transmit while B transmits to A!
- Same insight: Collisions spatially located at receiver
- One possibility: directional antennas rather than omnidirectional. Why does this help? Why is it hard?

MACA: Multiple Access with Collision Avoidance

· Carrier sense became adopted in packet radio

· But distances (cell size) remained large

Hidden and Exposed terminals abounded

 Simple solution: use receiver's medium state to determine transmitter behavior

RTS/CTS

- Exchange of two short messages: Request to Send (RTS) and Clear to Send (CTS)
- · Algorithm
 - 1. A sends an RTS (tells B to prepare)
 - 2. B replies an CTS (echoes message length)
 - 3. A sends its Data

Deference to CTS

 Hear CTS → Defer for length of expected data transmission time

Solves hidden terminal problem

Deference to RTS, but not CS

- Hear RTS → Defer one CTS-time (why?)
- MACA: No carrier sense before sending!
 - Karn concluded useless because of hidden terminals
- So exposed terminals B, C can transmit concurrently:

Collision!

- · A's RTS collides with C's RTS, both are lost at B
 - B will not reply with a CTS

- Might collisions involving data packets occur?
 - Not according to our (unrealistic) assumptions
 - But Karn acknowledges interference range > communication range

Bounded Exponential Backoff (BEB) in MACA

- When collisions arise, MACA senders randomly backoff like Ethernet senders then retry the RTS
- How long do collisions take to detect in the Experimental Ethernet?
- What size should we make MACA backoff slots?

BEB in MACA

- Current backoff constant: CW
- MACA sender:
 - $-CW_0 = 2$ and $CW_M = 64$
 - Upon successful RTS/CTS, $CW \leftarrow CW_O$
 - Upon failed RTS/CTS, $CW \leftarrow \min[2CW, CW_M]$
- Before retransmission, wait a uniform random number of RTS lengths (30 bytes) in [0, CW]
 - $-30 \text{ bytes} = 240 \, \mu \text{s}$

Summary

 Wireless networks: de facto means of accessing the Internet

 Alohanet, MACA packet radio network design insights

 Evolution from ALOHAnet, Ethernet, MACA, toward IEEE 802.11 Wi-Fi