Class Meeting: Lectures 15 and 16 HTTP and the Web, Content Distribution Networks

Kyle Jamieson

COS 461: Computer Networks

Today

1. The Web: HTTP, hosting, and caching

2. Content distribution networks (CDNs)

Anatomy of an HTTP/1.0 web page fetch

- Web page = HTML file + embedded images/objects
- Stop-and-wait at the granularity of objects:
 - Close then open new TCP connection for each object
 - Incurs a TCP RTT delay each time
 - Each TCP connection may stay in "slow start"

HTTP/1.0 webpage fetch: Timeline

Fetch 8.5 Kbyte page with 10 objects, most < 10 Kbyte

Letting the TCP connection persist

Known as HTTP keepalive

- Still stop-and-wait at the granularity of objects, at the application layer
 - HTTP response fully received before next HTTP GET dispatched
 - ≥ 1 RTT per object

HTTP Keepalive avoids TCP slow starts

Incur one slow start, but stop-and-wait to issue next request

Pipelining within HTTP

• Idea: Pipeline HTTP GETs and their responses

- Main benefits:
- 1. Amortizes the RTT across multiple objects retrieved
- 2. Reduces overhead of HTTP requests, packing multiple requests into one packet

• Implemented in HTTP/1.1

Pipelined HTTP requests overlap RTTs

- Many HTTP requests and TCP connections at once
- Overlaps RTTs of all requests

Today

- 1. The Web: HTTP, hosting, and caching
 - Handling heavy loads
- 2. Content distribution networks (CDNs)

Hosting: Multiple machines per site

- Problem: Overloaded popular web site
 - Replicate the site across multiple machines
 - Helps to handle the load
- Want to direct client to a particular replica. Why?
 - Balance load across server replicas
- Solution #1: Manual selection by clients
 - Each replica has its own site name
 - Some Web page lists replicas (e.g., by name, location), asks clients to click link to pick

Hosting: Load-balancer approach

- Solution #2: Single IP address, multiple machines
 - Run multiple machines behind a single IP address

11

Hosting: DNS redirection approach

- Solution #3: Multiple IP addresses, multiple machines
 - Same DNS name but different IP for each replica
 - DNS server returns IP addresses "round robin"

Hosting: Summary

- Load-balancer approach
 - No geographical diversity ×
 - TCP connection issue X
 - Does not reduce network traffic X
- DNS redirection
 - No TCP connection issues
 - Simple round-robin server selection
 - May be less responsive X
 - Does not reduce network traffic X

Web caching

- Many clients transfer the same information
 - Generates redundant server and network load
 - Also, clients may experience high latency

Why web caching?

- Motivation for placing content closer to client:
 - User gets better response time
 - Content providers get happier users
 - Network gets reduced load
- Why does caching work? Exploits locality of reference
- How well does caching work?
 - Very well, up to a limit
 - Large overlap in content
 - But many unique requests

Caching with Reverse Proxies

- Cache data close to origin server -> decrease server load

 - Typically done by content providers
 Client thinks it is talking to the origin server (the server with content)
 Does not work for dynamic content

Caching with Forward Proxies

- Cache close to clients → less network traffic, less latency Typically done by ISPs or corporate LANs Client configured to send HTTP requests to forward

 - proxy
- Reduces traffic on ISP-1's access link, origin server, and backbone ISP

Caching & Load-Balancing: Outstanding problems

- Problem ca. 2002: How to reliably deliver large amounts of content to users worldwide?
 - Popular event: "Flash crowds" overwhelm (replicated) web server, access link, or back-end database infrastructure
 - More rich content: audio, video, photos

• Web caching: Diversity of content requests causes low cache hit rates (25-40%)

Today

1. The Web: HTTP, hosting, and caching

- 2. Content distribution networks (CDNs)
 - Akamai case study

Content Distribution Networks

- Proactive content replication
 - Content provider (e.g. CNN) pushes content out from its own origin server

- · CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Updates pushed to replicas when the content changes

Origin server

Replica selection: Goals

- Live server
 - For availability

Requires continuous monitoring of liveness, load, and performance

- Lowest load
 - To balance load across the servers
- Closest
 - Nearest geographically, or in round-trip time
- Best performance
 - Throughput, latency, reliability...

Akamai statistics

- Distributed servers
 - Servers: ~100,000
 - Networks: ~1,000
 - Countries: ~70

- Many customers
 - Apple, BBC, FOX, GM
 IBM, MTV, NASA,
 NBC, NFL, NPR, Puma,
 Red Bull, Rutgers, SAP,

- · Client requests
 - 20+M per second
 - Half in the top45 networks
 - 20% of all Web traffic worldwide

How Akamai Works: Cache Hit

Mapping System

- To make these decisions need a map!
- Equivalence classes of IP addresses
 - IP addresses experiencing similar performance
 - Quantify how well they connect to each other
- Collect and combine measurements
 - Ping, traceroute, BGP routes, server logs
 - e.g., over 100 TB of logs per days
 - Network latency, loss, throughput, and connectivity

Routing client requests with the map

- Map each IP class to a preferred server cluster
 - Based on performance, cluster health, etc.
 - Updated roughly every minute
 - Short, 60-sec DNS TTLs in Akamai regional DNS accomplish this

- Map client request to a server in the cluster
 - Load balancer selects a specific server
 - e.g., to maximize the cache hit rate

Adapting to failures

- Failing hard drive on a server
 - Suspends after finishing "in progress" requests
- Failed server
 - Another server takes over for the IP address
 - Low-level map updated quickly (load balancer)
- Failed cluster, or network path
 - High-level map updated quickly (ping/traceroute)

Take-away points: CDNs

- Content distribution is hard
 - Many, diverse, changing objects
 - Clients distributed all over the world

- Moving content to the client is key
 - Reduces latency, improves throughput, reliability
- Content distribution solutions evolved:
 - Load balancing, reactive caching, to
 - Proactive content distribution networks

Next in 461:

Network Security and Specialized Topics:

- Wireless Networking
- Software-Defined Networking