Applications

Reliable streams Messages

Best-effort global packet delivery

Best-effort /ocal packet delivery

Class Meeting, Lectures 5 & 6:
Transport Layer and
Congestion Control

Kyle Jamieson
COS 461: Computer Networks

www.cs.princeton.edu/courses/archive/fall21/cos461
[Parts adapted from material by M. Freedman (Princeton), B. Karp (UCL), D. Katabi, (MIT), S. Shenker (UCB)]

Context: Transport Layer

* Best-effort network layer
— drops packets
— delays packets
— reorders packets
— corrupts packet contents

* Many applications want reliable transport
— all data reach receiver, in order they were sent
— no data corrupted
— “reliable byte stream”

* Need a transport protocol, e.g., Internet’s
Transmission Control Protocol (TCP)

TCP: Connection-Oriented,
Reliable Byte Stream Transport

Sending app offers stream of bytes: dO, d1, d2, ...

Receiving application sees all bytes arrive in same sequence:
do, d1, d2...

— Not all applications need in-order behavior (e.g., ssh does, but do
file transfer or teleconferencing, really?)

— result: reliable byte stream transport
Each byte stream: connection, or flow

Each connection uniquely identified by:
— <sender IP, sender port, receiver IP, receiver port>

User Datagram Protocol (UDP)

* Lightweight communication
between Processes
— Send and receive messages

— Avoid overhead of ordered,
reliable delivery

* No connection setup delay, no
in-kernel connection state

* Used by popular apps
— Query/response for DNS \

— Some teleconferencing apps

8 byte header

SRC port

DST port

checksum
—

length

DATA

Fundamental Problem:
Ensuring At-Least-Once Delivery

e

* A strategy to ensure delivery:

— Sender attaches a unique number (nonce) to each data
packet sent; keeps copy of sent packet

— Receiver returns acknowledgement (ACK) to sender for each
data packet received, containing nonce ‘

— Sender sets a timer on each transmission
* timer expires before ACK returns = retransmit that packet
e ACK returns = cancel timer, discard saved copy of that packet

=

— Sender limits maximum number of retransmissions

e

\

 How long should retransmit timer be?

Fundamental Problem: Estimating RTT

* Expected time of ACK’s return: round-trip time (RTT)

— end-to-end delay for data to reach receiver and ACK to
reach sender

— propagation delay on links

— serialization delay at each hop
— queuing delay at routers

e Strawman: use fixed timer (e.g., 250 ms)

/ — what if the route changes?

— what if congestion occurs at one or more routers?

Estimating RTT: Exponentially Weighted Moving
Average (EWMA)—

* Measurements of RTT reach ilable
— note time t when packet sent
— corresponding ACK returns at time t’

— RTT measurement @

EWMA weights newest samples most

How to choose a? (TCP uses 1/8)
Is mean sufficient to capture behavior

I\\Aurl\- W V 1| | O | ll\.—’ 1n 1]
— measurement , mh..
— fractional weight for new m
— RTT, = ((1-a) x RTT, ; + a

surement, a

Retransmission and Duplicate Delivery

When sender’s retransmit timer expires, two
indistinguishable cases (why?):

— data packet dropped en route to receiver, or
— ACK dropped en route to sender

In both cases, sender retransmits

In latter case, duplicate data packet reaches receiver!

— How to prevent receiver from passing duplicates to
application?

Eliminating Duplicates:
Exactly Once Delivery

Each packet sent with unique identifier (nonce)

Strawman: receiver stores nonces previously seen (tombstones)
— if received packet seen before, drop, but resend ACK to sender

How many tombstones must receiver store?

Better plan: sequence numbers

— sender marks each packet with monotonically increasing
sequence number (non-random nonce)

— sender includes greatest ACKed sequence number in its packets

— receiver remembers only greatest received sequence number,
drops received packets with smaller ones

10

send first segment

receive ACK,
send second segm

receive ACK,
send third segment

(repeat N times)

Done.

sender
—

ent

—

—
M
£ nt 2

Mh
-
Acknow\edgemem

e

Acknowledge™

Window-Based Flow Control: Motivation

receiver
fime

—» accept segment 1

—» accept segment 2

—» accept segment N

Suppose sender sends one packet, awaits ACK, repeats...
Result: one packet sent per RTT
 e.g., 70 ms RTT, 1500-byte packets: Max throughput: 171 Kbps

Fixed Window-Based Flow Control

sender

receive permission,
send segment 1 =

send segment 2 —»
send segment 3 —»
send segment 4 —=

receive ACK1 -=—
receive ACK 2 —=—
receive ACK3 —-—
receive ACK 4, --—

wait

receive permission,]
send segment 5 =5

send segment 6 —

mOyISSndo

$
:
&
3
3
?

receiver
time
receive request,

open a 4-segment
window

buffer segment 1
buffer segment 2
buffer segment 3
buffer segment 4 Y

YV

finished processing
segments 1-4, reopen
the window

T

buffer segment 5
buffer segment 6

vy

Pipeline transmissions to “keep pipe full”; overlap ACKs with data
Sender sends window of packets sequentially, without awaiting ACKs
Sender retains packets until ACKed, tracks which have been ACKed

Sender sets retransmit timer for each window; when expires, resends all
unACKed packets in window

12

Choosing Window Size:
Bandwidth-Delay Product

How large a window is required at sender to
keep the pipe full?

Network bottleneck: point of slowest rate along
path between sender and receiver

To keep pipe full

— window size 2 RTT X bottleneck rate
Window too small: can’t fill pipe

Window too large: unnecessary network
load/queuing/loss

13

TCP Packet Header

Bit: 0 4 10 16 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

20 octets

Data HARNEEBEE B
Reserved [R|cC|s|s|y[I Window
offset GIK|H|TIN|N
Checksum Urgent Pointer
Options + Padding

 TCP packet: IP header + TCP header + data

 TCP header: 20 bytes long

 Checksum covers header + “pseudo header”
— |IP header source and destination addresses, protocol
— Length of TCP segment (TCP header + data)

14

TCP Header Details

Connections inherently bidirectional; all TCP headers
carry both data and ACK sequence numbers

32-bit sequence numbers are in units of bytes

Source and destination ports

— multiplexing of TCP by applications

— UNIX: local ports below 1024 reserved (only root may use
them)

Window: advertisement of number of bytes advertiser
willing to accept

15

TCP Connection Establishment:
Motivation

Goals:
— Start TCP connection between two hosts

— Avoid mixing data from old connection in new
connection

— Avoid confusing previous connection attempts with
current one

— Prevent (most) third parties from impersonating
(spoofing) one endpoint

SYN packets (SYN flag in TCP header set) used to
establish connections

Use retransmission timer to recover from lost
SYNs

What protocol meets above goals?

16

TCP Connection Establishment:
Non-Solution ()

* Use two-way handshake

e Asends SYNtoB

— A retransmits SYN if not
received

— B accepts by returnmg SYN to A

A

— s

SYN

s

data, se no =1

%

(N

time

Connectlons shouldn’t start with constant

sequence number; risks mixing data
between old and new connections

 What about delayed data
packets from old connection?

—gtmw — g
data Segno =

= 1024

17

TCP Connection Establishment:
Non-Solution (Il)

A B
 Two-way handshake, as time

before

e But enclose random initial

sequence numbers on
SYNSs

‘close

Connection attempts should explicitly
acknowledge which SYN they are
accepting!

connection successtully Te===nTg uala
established ignored

— B will drop all of A’s data! !

18

TCP Connection Establishment:
3-Way Handshake

A B

* Set SYN on connection Sh, o
Qno . .
request \ |
= time
: ge(\“o '.\—1

* Each side chooses et %o =1

random initial Segn,,

ACk . 1+1

sequence number (ISN) 2ty

* Each side explicitly

ACKs the sequence
number of the SYN it’s
responding to

19

Robustness of 3-Way Handshake:

Delayed SYN
Suppose A’s SYN i
delayed, arrives at B B
after connection closed
B responds with “dose

SYN/ACK for i+1 W d

A doesn’t recognize i+1; Lme
responds with reset, RST 8T, ack
flag set in TCP header e

A rejects connection

20

Robustness of 3-Way Handshake:
Delayed SYN/ACK

A attempts connection
to B

Suppose B’s SYN k/ACK p
delayed, arrives at A
during new connection
attempt

A rejects SYN k; sends
RSTto B

Connection from A to B
succeeds unimpeded

21

Robustness of 3-Way Handshake:
Source Spoofing

e Suppose host B trusts host
A, based on A’s IP

— e.g., B allows any account SYN, seqno = j,
creation request from A A - ACK = i+1 g
™

N
™ 7

Unless he is on path between A and B, adversary
cannot spoof A to B or vice-versa!

Why: random ISNs on SYNs

“create an account 133thax0r”)

e Can M establish a
connection to B as A?

22

Next Up in 461

Next Class Meeting
Lectures 7 (Queue Management) and
8 (Middleboxes, Tunneling)

Precepts this Thursday and Friday

35

