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Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
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Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
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Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998

expression size grows
at every recursive call ...

lots of adding to do after
the call returns”
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Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998
--> 

...
-->

1000000 + 99999 + 99998 + ... + sum_to 0
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Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998
--> 

...
-->

1000000 + 99999 + 99998 + ... + sum_to 0
--> 

1000000 + 99999 + 99998 + ... + 0

recursion
finally bottoms out
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Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:
(* sum of 0..n *)

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 0
;;

let big_int = 1000000;;

sum big_int;;

sum_to 1000000
-->

1000000 + sum_to 99999
-->

1000000 + 99999 + sum_to 99998
--> 

...
-->

1000000 + 99999 + 99998 + ... + sum_to 0
--> 

1000000 + 99999 + 99998 + ... + 0
-->

... add it all back up ...

do a long series
of additions to get
back an int
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Non-tail recursive

sum_to 10000

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000
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Non-tail recursive

10000 +

sum_to 9999

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000
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Non-tail recursive

10000 +

9999 +

sum_to 9998stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000
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Non-tail recursive

10000 +

9999 +

9998 +stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000

.

.

.

sum_to 0
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Non-tail recursive

10000 +

9999 +

9998 +stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000

.

.

.

0
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Non-tail recursive

10000 +

9999 +

nstack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000
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Non-tail recursive

10000 +

m

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 10000
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Non-tail recursive

result 

stack

let rec sum_to (n:int) : int =
if n > 0 then
n + sum_to (n-1)

else 
0

;;

sum_to 100
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Data Needed on Return Saved on Stack

sum_to 10000
--> 

...
-->

10000 + 9999 + 9998 + 9997 + ... +
--> 

...
-->

...

9996
9997
9998
9999
10000

every non-tail call puts the data from the calling context on the stack

not much space left!
will run out soon!

the stack
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Memory is partitioned: Stack and Heap

heap space (big!)

stack space
(small!)
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
-->

aux 99999 1000000
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
-->

aux 99999 1000000
--> 

aux 99998 1999999
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

Tail-recursive:
(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

sum_to2 1000000
-->

aux 1000000 0
-->

aux 99999 1000000
--> 

aux 99998 1999999
-->

...
--> 

aux 0 (-363189984)
-->

-363189984

(addition overflow occurred
at some point)

constant size expression
in the substitution model
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 10000 0  

stack
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 9999 10000  

stack
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 9998 19999  

stack
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Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 9997 29998  

stack

26



Tail Recursion
A tail-recursive function is a function that does no work after it 
calls itself recursively.

(* sum of 0..n *)

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) 

: int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

aux 0 BigNum

stack
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Question  

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform any recursive 
function into a tail-recursive one?

let sum_to2 (n: int) : int =
let rec aux (n:int)(a:int) : int =
if n > 0 then
aux (n-1) (a+n)

else a
in
aux n 0

;;

let rec sum_to (n: int) : int =
if n > 0 then 
n + sum_to (n-1)

else
0

;;
human
ingenuity

not only is sum2
tail-recursive
but it reimplements
an algorithm that
took linear space
(on the stack)
using an algorithm
that executes in
constant space!
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CONTINUATION-PASSING STYLE
CPS!
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CPS

CPS:
– Short for Continuation-Passing Style
– Every function takes a continuation (a function) as an argument 

that expresses "what to do next"
– CPS functions only call other functions as the last thing they do
– All CPS functions are tail-recursive

Goal:
– Find a mechanical way to translate any function in to CPS 
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Serial Killer or PL Researcher? 31



Serial Killer or PL Researcher?

Gordon Plotkin
Programming languages researcher
Invented CPS conversion.

Call-by-Name, Call-by Value 
and the Lambda Calculus. TCS, 1975.

Robert Garrow
Serial Killer

Killed a teenager at a campsite
in the Adirondacks in 1974.
Confessed to 3 other killings.
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Serial Killer or PL Researcher?

Gordon Plotkin
Programming languages researcher
Invented CPS conversion.

Call-by-Name, Call-by Value 
and the Lambda Calculus. TCS, 1975.

Robert Garrow
Serial Killer

Killed a teenager at a campsite
in the Adirondacks in 1974.
Confessed to 3 other killings.
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Question  

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes!

Idea:  Instead of returning to do some work, add an argument 
called a continuation.  That continuation "does the rest of the
work."  Instead of returning to do work, call the continuation to 
do it.

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;
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Question  

type cont = int -> int

let rec sum_cont (l:int list) (k : cont) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

35

Step 1:  Add the continuation.  Think of this as
"the work you have left to do" and always call it last to finish up that work

needs
to be fixed up



Question  

type cont = int -> int

let rec sum (l:int list) (k : cont) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

36

Step 2: Call the continuation on the base case, passing it the result of the 
current computation

Trust that the continuation is going to do the rest of the work that you've 
saved for later when you've finished fixing up your function.

type cont = int -> int

let rec sum_cont (l:int list) (k : cont) : int =
match l with
[] -> k 0

| hd::tail -> hd + sum tail
;;



Question  

type cont = int -> int

let rec sum (l:int list) (k : cont) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

37

Step 3: On recursive calls, pass a new continuation that does the leftover work 
you were supposed to do after this call (plus the work of k)

type cont = int -> int

let rec sum_cont (l:int list) (k : cont) : int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s))
;;

To do after summing the tail:
add hd to the result (s) and then do continuation k



Question  

type cont = int -> int

let rec sum (l:int list) (k : cont) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

38

Step 4:  Generate the initial continuation (which does nothing – no leftover 
work at that start).

type cont = int -> int

let rec sum_cont (l:int list) (k : cont) : int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s))

let sum (l:int list) = sum_cont l (fun s -> s)



Execution

sum [1;2]

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

42



Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->

(fun s -> (fun s -> s) (1 + s)) (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->

(fun s -> (fun s -> s) (1 + s)) (2 + 0))
-->

(fun s -> s) (1 + (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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Execution

sum [1;2]
-->

sum_cont [1;2] (fun s -> s)
-->

sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->

sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->

(fun s -> (fun s -> s) (1 + s)) (2 + 0))
-->

(fun s -> s) (1 + (2 + 0))
-->

1 + (2 + 0)
--> 

3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
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CORRECTNESS OF A CPS 
TRANSFORM
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Are the two functions the same?

Here, it is really pretty tricky to be sure you've done it right if you 
don't prove it.  Let's try to prove this theorem and see what 
happens:

let rec sum (l:int list) : int =
match l with
[] -> 0

| hd::tail -> hd + sum tail
;;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
match l with
[] -> k 0

| hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum2 (l:int list) : int = sum_cont l (fun s -> s)

for all l:int list, 
sum_cont l (fun x -> x) == sum l
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Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail
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Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
==
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Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval)
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Attempting a Proof

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval)
== sum_cont tail (fn s' -> hd + s')                (eval)
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Need to Generalize the Theorem and IH

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
...

case: hd::tail
IH: sum_cont tail (fun s -> s) == sum tail

sum_cont (hd::tail) (fun s -> s)                
== sum_cont tail (fn s' -> (fn s -> s) (hd + s'))  (eval)
== sum_cont tail (fn s' -> hd + s')                (eval)

== darn!

we'd like to use the IH, but we can't!
we might like:

sum_cont tail (fn s' -> hd + s') == sum tail

... but that's not even true

not the identity continuation
(fun s -> s) like the IH requires
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:
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for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 

57Need to Generalize the Theorem and IH



Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
== match [] with [] -> k 0 | hd::tail -> ...    (eval)
== k 0 (eval)
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== k (sum [])
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Need to Generalize the Theorem and IH

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove:  for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:

sum_cont [] k 
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== k (0) (eval, reverse)
== k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)
== k (sum [])

case done!
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

61



Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)

== (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

64



Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)

== (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

== k (hd + (sum tail))                     (eval, since sum total and
and sum tail valuable)
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Need to Generalize the Theorem and IH
for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH:  for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove:  for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum_cont (hd::tail) k
== sum_cont tail (fun s -> k (hd + s))     (eval)

== (fun s -> k (hd + s)) (sum tail)        (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))

== k (hd + (sum tail))                     (eval, since sum total and
and sum tail valuable)

== k (sum (hd::tail))                       (eval sum, reverse)

case done!
QED! 
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Finishing Up
Ok, now what we have is a proof of this theorem:

We can use that general theorem to get what we really want:

So, we've show that the function sum2, which is tail-recursive, is 
functionally equivalent to  the non-tail-recursive function sum. 

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)

for all l:int list, 
sum2 l 

== sum_cont l (fun s -> s)     (by eval sum2)
== (fun s -> s) (sum l) (by theorem, instantiating k with (fun s -> s)
== sum l (by eval, since sum l valuable) 
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SUMMARY
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CPS
CPS is interesting and  important:
• unavoidable

• assembly language is continuation-passing
• theoretical ramifications

• fixes evaluation order
• call-by-value evaluation == call-by-name evaluation

• efficiency  
• generic way to create tail-recursive functions
• Appel's SML/NJ compiler based on this style

• continuation-based programming
• call-backs
• programming with "what to do next"

• implementation-technique for concurrency
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Summary of the CPS Proof
We tried to prove the specific theorem we wanted:

But it didn't work because in the middle of the proof, the IH didn't 
apply -- inside our function we had the wrong kind of continuation 
-- not (fun s -> s) like our IH required.  So we had to prove a more 
general theorem about all continuations.

This is a common occurrence -- generalizing the induction 
hypothesis -- and it requires human ingenuity.  It's why proving 
theorems is hard.  It's also why writing programs is hard -- you have 
to make the proofs and programs work more generally, around 
every iteration of a loop.

for all l:int list, sum_cont l (fun s -> s) == sum l

for all l:int list, 
for all k:int->int, sum_cont l k == k (sum l)
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