
Incremental Computation

COS 326
David Walker

Princeton University

slides copyright 2021 David Walker
permission granted to reuse these slides for non-commercial educational purposes

data, data

recompute facts

Spreadsheets

https://blog.janestreet.com/incrementality-and-the-web/

Computational Biology, DNA, and Mutation

INCREMENTAL COMPUTING
IN OCAML

Efficient Parallel Computations

2 7 4 3 9 8 2 1

++

+

+ + ++

31779

16 20

36

Work(n) = ~n additions to sum a vector of length n

Span(n) = ~log(n) additions – the length of the longest dependency chain

Efficient Parallel Computations

2 7 4 3 9 8 2 1

++

+

+ + ++

31779

16 20

36

Work(n) = ~n additions to sum a vector of length n

Span(n) = ~log(n) additions – the length of the longest dependency chain

Efficient Incremental Computations

2 8 4 3 9 8 2 1

++

+

+ + ++

31779

16 20

36

change from 7 to 8

out of date

Efficient Incremental Computations

2 8 4 3 9 8 2 1

++

+

+ + ++

317710

16 20

36out of date

change from 7 to 8

Efficient Incremental Computations

2 8 4 3 9 8 2 1

++

+

+ + ++

317710

17 20

36out of date

change from 7 to 8

Efficient Incremental Computations

2 8 4 3 9 8 2 1

++

+

+ + ++

317710

17 20

37

change from 7 to 8
Now up to date!
Work to recompute from scratch: ~n
Work to recompute incrementally: ~log n

Parallel vs Incremental Computation

Similarity: span (ie: length of the longest dependency chain) of a
computation governs latency

Difference: we will do a parallel computation once. We will do
an incremental computation many times.
• the parallel dependency graph was implicit

– represented the series of function calls made in order
• the incremental dependency graphs will be explicit

– we will need to create a data structure that stores the
computation graph so it can be reused

Incremental Dependency Graphs

• Nodes have type 'a Inc.t
• nodes store a current value with type 'a

• Edges are functions with type 'a -> 'b
• if the argument 'a changes, the function recomputes 'b

Incremental Dependency Graphs

3 4

• Nodes have type 'a Inc.t
• nodes store a current value with type 'a

• Edges are functions with type 'a -> 'b
• if the argument 'a changes, the function recomputes 'b

(+ 1)

int Inc.t

Incremental Dependency Graphs

3 4

4
8

"4"

9

• Nodes have type 'a Inc.t
• nodes store a current value with type 'a

• Edges are functions with type 'a -> 'b
• if the argument 'a changes, the function recomputes 'b

(+ 1)

string Inc.t

(* 2)

to_string

Accessing Incremental Dependency Graphs

Sources of information have type 'a Var.t
You can change them.
Changes are propagated through the graph

Accessing Incremental Dependency Graphs

Sources of information have type 'a Var.t
You can change them.
Changes are propagated through the graph

Sinks have type 'a Obs.t
You can read them

3

7

10

3

10

7

+

let x = Var.create 3 in
let y = Var.create 7 in
let z =

Inc.map2
(Var.watch x)
(Var.watch y)
~f:(fun x y -> x + y) in

let z_o = Inc.observe z in

Building an Incremental Computation

3
7 let x = Var.create 3 in

let y = Var.create 7 in

x : int Var.t
y : int Var.t

1. Create initial sources with Var.create

Building an Incremental Computation

3

7

3
7

let xi = Var.watch x in
let yi = Var.watch y in

x : int Var.t
y : int Var.t

yi : int Inc.t

xi : int Inc.t

2. Create incremental nodes by watching sources for change.

Var.watch : 'a Var.t -> 'a Inc.t

Building an Incremental Computation

3

7

4

3
7 let zi = Inc.map xi ~f:(fun x -> x + 1) in

3. Create new incremental nodes from existing incremental nodes
by creating edges using map, map2, map3 ...

Inc.map : 'a Inc.t -> f:('a -> 'b) -> 'b Inc.t

yi : int Inc.t

xi : int Inc.t

zi : int Inc.t
+1

Building an Incremental Computation

3

7

4

3
7 let ri = Inc.map2 zi yi ~f:(fun x y -> x + y) in

3. Create new incremental nodes from existing incremental nodes
by creating edges using map, map2, map3 ...

Inc.map2 : 'a Inc.t -> 'b Inc.t -> f:('a -> 'b -> 'c) -> 'c Inc.t

yi : int Inc.t

zi : int Inc.t
+1

11+

ri : int Inc.t

Building an Incremental Computation

3

7

4

3
7 let ro = Inc.observe ri

4. Extract observable results from graph

Inc.observe : 'a Inc.t -> 'a Obs.t

+1

11+
ri : int Inc.t

11 ro : int Obs.t

Building an Incremental Computation

3

7

4

3
7 Inc.stabilize ();

5. Stabilize (ie: push any pending changes through the graph)

Inc.stabilize : unit -> unit

+1

11+
ri : int Inc.t

11 ro : int Obs.t

Building an Incremental Computation

3

7

4

3
7 let v = Obs.value_exn ro

6. Get plain value from observable after stabilizing.

Obs.value_exn : 'a Inc.t -> 'a Obs.t

+1

11+

11

ro : int Obs.t

11

plain value v : int

Building an Incremental Computation

3

7

4

3
7

+1

11+

11 11

let x = Var.create 3 in
let y = Var.create 7 in

let xi = Var.watch x in
let yi = Var.watch y in

let zi = Inc.map xi
~f:(fun x -> x + 1) in

let ri = Inc.map2 zi yi
~f:(fun x y -> x + y) in

let ro = Inc.observe ri in

stabilize();
let v = Obs.value_exn ro in

Summary

Building an Incremental Computation

3

7

4

3
8

+1

11+

11 11

Var.set y 8;
y : int Var.t

7. Update source variables.

Var.set : 'a Inc.t -> 'a -> unit

Building an Incremental Computation

3

8

4

3
8

+1

12+

12

Inc.stabilize ();
y : int Var.t

7. Stabilize again

Building an Incremental Computation

3

8

4

3
8

+1

12+

12

let v_updated = Obs.value_exn ro in
y : int Var.t

8. Get plain value from observable after stabilizing.

Obs.value_exn : 'a Inc.t -> 'a Obs.t
12

Building an Incremental Computation

1

8

2

1
8

+1

10+

10

Var.set x 1;
Inc.stabilize();
let v_updated2 = Obs.value_exn ro in

y : int Var.t

9. Repeat: Set var --> Stabilize --> Get observed value
Each time, the subgraph that changed and on which the answer
depends is recomputed.

10

Structured Graphs
So Far: Unstructured, ad hoc graphs

Next: Structured graphs

trees tables/spread sheets

Structured Graphs
Implement a reduce of function f over a sequence.

0 1 2 3Iteration:

Let prev be the array created in previous iteration
Each cell i of the current array will be defined as follows:

curr[i] = f (prev[2*i]) (prev[2*i+1])

curr[i] = prev[2*i]

if prev[2*i+1] exists

otherwise

Structured Graphs

Let prev be the array created in previous iteration
Each cell i of the current array will be defined as follows:

curr[i] = f (prev[2*i]) (prev[2*i+1])

curr[i] = prev[2*i]

if prev[2*i+1] exists

otherwise

let rec merge (prev: 'a array) (f:'a -> 'a -> 'a) : 'a =
if Array.length prev <= 1 then prev.(0)
else

let len = Array.length prev in
let len' = (len/2) + (len mod 2) in
let cell i =

if i * 2 + 1 < len then f prev.(2*i) prev.(2*i+1)
else prev.(2*i)

in
let curr = Array.init len' cell in
merge curr f

Standard Functional Algorithm:

compute new
cell value from
previous cell
values

prev array of values
thrown away after
its one use

Structured Graphs

Let prev be the array created in previous iteration
Each cell i of the current array will be defined as follows:

curr[i] = f (prev[2*i]) (prev[2*i+1])

curr[i] = prev[2*i]

if prev[2*i+1] exists

otherwise

let rec merge (prev: 'a Inc.t array) (f:'a -> 'a -> 'a) : 'a =
if Array.length prev <= 1 then prev.(0)
else

let len = Array.length prev in
let len' = (len/2) + (len mod 2) in
let cell i =

if i * 2 + 1 < len then Inc.map2 prev.(2*i) prev.(2*i+1) ~f:f
else prev.(2*i)

in
let curr = Array.init len' cell in
merge curr f

Standard Functional Algorithm:

pass in array of
incrementals

create incremental graph:

f
prev

curr

Moral of the Story
Functional algorithms are easily transformed into incremental
functional algorithms.

f x1

calls f x2

calls f x3

Stack of Functional Recursive Calls:

f x1

calls Inc.map x2 ~f

calls Inc.map x3 ~f

Build Incremental graph Calls:

1. convert argument from 'a to 'a Inc.t
2. convert result computed from 'b to 'b Inc.t by using Inc.map
3. fix up initial call to supply 'a Inc.t rather than 'a (use Var.create, Var.watch)

fix up result returned to extract 'a from 'a Inc.t (use Inc.observe, Obs.value_exn)

Mutation
What happens if your algorithm is not function? Uses mutable references?

i=1 1
x := !x+i; !x

0

Issue 1: The output is immediately "out of date"

i=1 2
x := !x+i; !x

original run If you run it again,
you get a different answer

1
before after

1 2
before after

x x

Very difficult to reason about (and draw!)
Avoid at almost all costs.

Mutation
What happens if your algorithm is not function? Uses mutable references?

i=1 1
!x + i

Issue 2: An external agent modifies your reference

i=1 2
!x + 1

original run stabilize() will not rerun
the computation

1 2

You usually want your inputs to have type 'a Var.t so you can watch them.

AN APPLICATION:
INCREMENTAL LONGEST COMMON
SUBSEQUENCE ALGORITHMS

Comparative Genomics

DNA Sequences

A C T G C A
A(denine)
C(ytosine)
G(uanine)
T(hymine)

Nucleotides

Longest Common Subsequence

A C T G C A

A

X is a Subsequence of Y if X can be obtained from Y by deleting
some of the elements of Y.

A Longest Common Subsequence between Z and W is a
subsequence S of both Z and W that is as long or longer than any
other subsequence of Z and W.

A C T A A C T G C A

A C T G C A

C A T

subsequences

C A
A T
C T

LCS

Longest Common Subsequence: Rule 1.

A :: [... rest1 ...]

A :: [... rest2 ...]
A :: LCS (rest1, rest2)

Input Sequences Longest Common Subsequence

A C G T

Example

A C T A

Longest Common Subsequence

A C T

LCS of rest is C T

Rule 1: first letters match

Longest Common Subsequence: Rule 2.

A :: [... rest1 ...]

C :: [... rest2 ...]

LCS (A::rest1, rest2)

Input Sequences Longest Common Subsequence

A C G T

Example

C G A T

Longest Common Subsequence

LCS is C G T

LCS (rest1, C::rest2)

or

(whichever is longest)

A C G T

C G A T

LCS is A T (or G T)

A C G T

C G A T

C G T

Rule 2: first letters con't match

Redundant Computation

LCS (A G G T, C G A T)

LCS (G G T, C G A T) LCS (A G G T, G A T)

LCS (G T, C G A T)

LCS (G G T, G A T)

LCS (A G G T, G A T)

LCS (G G T, G A T)

Redundant Computation

LCS (A G G T, C G A T)

LCS (G G T, C G A T) LCS (A G G T, G A T)

LCS (G T, C G A T)

LCS (G G T, G A T)

LCS (A G G T, G A T)
reuse

Memoize Results (Dynamic Programming)

A G TG

C

T

G

T

Cell (i, j) contains LCS (input1[i..], input2[j..])

LCS(T,GTT)

LCS(TT,TT)

LCS(AGGT,
CGTT)

LCS(T,T)

1234

4

3

2

1

Memoize Results (Dynamic Programming)

A G TG

C

T

G

T

Cell (i, j) depends on
Cell (i-1, j-1), or
Cell (i, j-1) and Cell(i-1, j-1)

LCS(T,TT)LCS(TT,TT)

LCS(T,T)LCS(GT,T)

1234

4

3

2

1

Memoize Results (Dynamic Programming)

GT GT GT T

GT GT GT T

T T T T

T T T T

A G TG

C

T

G

T

Memoize Results (Dynamic Programming)

GT GT GT T

GT GT GT T

T T T T

T T T T

A G TG

C

T

G

T

Implementation Data Structure

GT GT GT T

GT GT GT T

T T T T

T T T T

A G TG

C

T

G

T

Create a key-value map to store intermediate results:
• keys have type dna * dna
• values have type dna * length
• Dict.find (dna1, dna2) = LCS(dna1, dna2)

Implementation Data Structure: Phase 1

GT GT GT T

GT GT GT T

T T T T

T T T T

A G TG

C

T

G

T

You will actually create a generic memoizer
• A functor generates a memoizer for any function!
• You'll apply it to the LCS algorithm

Implementation Data Structure: Phase 2

GT GT GT T

GT GT GT T

T T T T

T T T T

A G TG

C

T

G

T

C

G

T

T

TGGA

Build an incremental dependency graph

LCS(seq2, seq2)

Implementation Data Structure: Phase 2

AGT GT GT T

GT GT GT T

T T T T

T T T T

A G TG

A

T

G

T

A

G

T

T

TGGA

Mutate input cells; Stabilize incremental graph; Obtain result

LCS(seq2, seq2)

Assignment Summary: Caching N Ways
• Lazy computation with infinite data structures (streams.ml)

– lazy results get cached
– infinite speedup when you process infinite data structures!

• Manually Memoizing Fibonacci (memo.ml)
– fib n = fib (n-1) + fib (n-2) if n > 1
– recursive calls are cached to avoid exponential blow-up

• Auto-memoizing (memo.ml)
– build a functor to cache results for any function
– build a dictionary that maps function inputs to outputs
– an automatic dynamic programmer
– apply to LCS algorithm

• Incremental computation (lcs.ml)
– build a dictionary of incrementals
– incrementally recompute LCS

What did you get out of this course?

OCaml

If you have inductive data, think inductively!
Assume your IH and use it to compute your answer

Get work done by creating new data
not always by changing old data

Immutable data preserves invariants,
simplifies reasoning about your code

Lazy evaluation allows you to program with
the abstraction of infinite data

Trees and sequences are good
for parallel (and incremental)

computation

Substitution model of execution
defines program semantics

Check your representation invariants
when data released from a module

HOT (Higher-order, Typed)
programming gives great code reuse

Java Programs are insanely verbose.
Honestly, why go back?

But implement interpreters
with an environment-based model
and closures

All languages should have lambdas

All languages should
have ML data types.

Concise code +
exhaustiveness checks for the win

Parallelism via Map, Reduce, Scan
Functions are data structures

Indeed, represent functions
using data structures (ie: ASTs)

Prove things about entire programming
languages via induction over their ASTs!

Recursive XKCD

