
COS 326: Functional Programming

Lecture
Boolean Satisfiability (SAT) Solvers

Aarti Gupta

Acknowledgements: Sharad Malik, Emina Torlak

1

What is SAT?
Given a propositional logic (Boolean) formula,

find a variable assignment such that the formula evaluates to true,
or prove that no such assignment exists.

For n variables, there are 2n possible truth assignments to be checked.

First established NP-Complete problem.
S. A. Cook, The complexity of theorem proving procedures, Proceedings,
Third Annual ACM Symp. on the Theory of Computing,1971, 151-158

F = (a || b) && (a’ || b’ || c)

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

2

|| denotes OR
&& denotes AND
’ denotes NOT

SAT and logics
Propositional logic is a subset of

• First order logic
• Higher-order logic

Validity of formulas (i.e., checking if all variable assignments
make the formula true)

• Propositional logic: decidable
• First order logic: semi-decidable
• Arithmetic and higher-order logic: undecidable

Complexity of SAT: NP-complete
• There is no known polynomial-time algorithm
• … but often tractable in practice on real-world problems!

3

Why is it of interest now?
SAT: is a Boolean formula f satisfiable?

SMT (Satisfiability Modulo Theory):

is a first-order logic formula theory-satisfiable?
2004

DPLL(T)

2008
Z3

2009
SMT

1960
DP

»10 var

1962
DLL

» 10 var

1952
Quine
» 10 var

1986
BDD

» 100 Var

(Source: Sharad Malik)

1988
SOCRATES
» 3k Var

2001
Chaff

»10k var

2003
MiniSAT
»10k var

1996
GRASP
»1k Var

1997
SATO
» 1k Var

1996
Stålmarck
» 1k Var

4

Where are we today?
Intractability of the problem no longer daunting

• can regularly solve practical instances with millions of variables
and constraints

SAT has matured from theoretical interest to practical impact
• Electronic Design Automation (EDA)

• Widely used in many aspects of chip design: equivalence checking,
assertion verification, synthesis, debugging, post-silicon validation

• Software verification
• Commercial use at Microsoft, Amazon, Google, Facebook, …

• AI and Planning problems

• CAV 2009 Award due to industrial impact
• Chaff solver team from Princeton shared the award!

5

Where are we today?

Significant SAT community
• SatLive Portal (http://www.satlive.org/)
• Annual SAT competitions (http://www.satcompetition.org/)
• SAT Conference (http://www.satisfiability.org/)

Emboldened researchers to take on even harder problems
related to SAT

• Max-SAT: for optimization
• Satisfiability Modulo Theories (SMT): for more expressive theories
• Quantified Boolean Formulas (QBF): for more complex problems

• Many ideas from SAT solvers are applied here

6

http://www.satlive.org/)
http://www.satcompetition.org/
http://www.satisfiability.org/

Some basics first …

7

Boolean formulas: Syntax

Formula f = // inductive definition

true | false | // base cases: constants

v | // base case: variable

NOT g | g AND h | g OR h // inductive cases

where

v is a propositional variable, i.e., it takes value true or false

NOT, AND, OR are the usual Boolean operators

8

Boolean formulas: Semantics
Given a Boolean formula f,

and an Interpretation M, which maps variables to true/false

We can evaluate f under M to produce a Boolean result (true or false).
• Base case true: return true
• Base case false: return false
• Base case variable v: return value of v in M
• Inductive cases: return result by using the truth tables shown below

Example: Evaluate f: (a OR b) AND (NOT c) under M:{a ↦ true, b ↦ false, c ↦ false}

f = (1 OR 0) AND (NOT 0) … f evaluates to true under M
9

g Not g
0 1
1 0

0 denotes false
1 denotes true

g h g AND h
0 0 0
0 1 0
1 0 0
1 1 1

g h g OR h
0 0 0
0 1 1
1 0 1
1 1 1

Boolean formulas: Semantics
Given a Boolean formula f,

and an Interpretation M, which maps variables to true/false

If f evaluates to true under M, we say that M satisfies f

Example: f: (a || b) && (a’ || b’ || c), M1: {a ↦ true, b ↦ true, c ↦ false}

(Q1) Does M1 satisfy f?

No, because f evaluates to false under M1.

(Q2) Is f satisfiable, i.e., does there exist an M such that M satisfies f?

Yes, f is satisfiable.

For example, M2: {a ↦ true, b ↦ true, c ↦ true} satisfies f

SAT solvers can automatically find a satisfying interpretation! (if it exists)

10

|| denotes OR
&& denotes AND
’ denotes NOT

SAT solvers: a condensed history
Deductive

• Davis-Putnam 1960 [DP]
• Based on “resolution”

Backtracking Search
• Davis, Putnam, Logemann and Loveland 1962 [DLL, DPLL]
• Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
• GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
• Emphasis on exhausting local sub-spaces, e.g., Chaff, 2001
• Added focus on efficient implementations

“Pre-processing”
• Peephole optimization, e.g., MiniSat, 2005

…
11

Princeton Senior Thesis!

SAT problem representation
Boolean formulas represented in:
Conjunctive Normal Form (CNF)

• for formula to be true: each clause must be satisfied
• in each clause: some literal must be true

(a || b || c) && (a’ || b’|| c) && (a’|| b || c’) && (a || b’ || c’)

clause: is a disjunction of literals

formula: is a conjunction of clauses

literal: is a variable or its negation

12

e.g., (a || b’ || c’)

e.g., a, a’

CNF Representation
Q: Can any Boolean formula be converted to CNF?

Yes!

Q: How can I convert a Boolean formula to CNF?

Many different translations exist …

You will explore two translations in Assignment 3

1. A naïve translation based on de Morgan’s Laws

2. Tseitin transformation (useful for checking SAT)

13

Translation to CNF
We can view CNF as a special kind of expression tree for a

Boolean formula

CNF has maximum 3 levels, where
• top-level node is AND
• second-level nodes are OR
• NOT (i.e., negation) can be optionally applied only at the leaves
• leaf level nodes are variables (with/without negation)

Example: (x1 || x3’ || x4) && (x2 || x3’ || x4) is in CNF

14

||

&&

x1 x4x3’

||

x2 x4x3’

|| denotes OR
&& denotes AND
’ denotes NOT

(1) Naïve Translation to CNF
Given an arbitrary expression tree for a Boolean formula

• #1: Push NOT nodes inside an AND or OR

• #2: Distribute outer OR nodes over an inner AND
(p && q) || (x && y) = (p || x) && (p || y) && (q || x) && (q || y)

• Simplifications
• NOT(NOT p) = p
• Nested AND nodes to a single AND (when possible)
• Nested OR nodes to a single OR node (when possible)

Correctness of Naïve translation
• The generated CNF formula is equivalent to the given formula
• However, its size can be exponentially bigger L

15

de Morgan’s Laws
NOT (p || q) = (NOT p) && (NOT q)
NOT (p && q) = (NOT p) || (NOT q)

(1) Naïve translation to CNF: Example
Example: (x1 && x2) || (NOT (x3 && NOT x4))

= (x1 && x2) || (NOT x3 || NOT(NOT x4)) … #1

= (x1 && x2) || (NOT x3 || x4) … NOT simplification

= (x1 || NOT x3 || x4) && (x2 || NOT x3 || x4) … #2

= (x1 || x3’ || x4) && (x2 || x3’ || x4)

16

||

&& NOT

x3 NOT

#1

x1 x2

x4

#2

&&

Original formula

||

&&

x1 x4x3’

||

x2 x4x3’

CNF representation

Tseitin Transformation Example

17

||

&& NOT

x3 NOT

x1 x2

x4

&&

Original formula

y1

y2

y3

y4

New variables: y1, y2, y3, y4, y5
Equations
y1 = x1 && x2
y2 = y1 || y3
y3 = NOT y4
y4 = x3 && y5
y5 = NOT x4

y5

CNF
(x1 || y1’) && (x2 || y1’) && (x1’ || x2’ || y1) &&
(y1’ || y2) && (y3’ || y2) && (y1 || y3 || y2’) &&
(y3 || y4) && (y3’ || y4’) &&
(x3 || y4’) && (y5 || y4’) && (x3’ || y5’ || y4) &&
(x4 || y5) && (x4’ || y5’) &&
(y2)

Equation CNF to implement the Equation
z = NOT x (x || z) && (x’ || z’)
z = x && y (x || z’) && (y || z’) && (x’ || y’ || z)
z = x || y (x’ || z) && (y’ || z) && (x || y || z’)

Main idea: Introduce fresh variable for
each subformula and write ”equations”

(2) Tseitin Transformation
Main idea: Introduce new (fresh) variables for each subformula

• Write ”equations”: new variable = subformula
• Generate CNF for each equation, depending on the operator, as follows:

• AND together the CNFs for all equations
• AND a clause with a single literal for the top-level formula (if you want to

check satisfiability of the top-level formula)

Correctness of Tseitin transformation
• For a given formula f, let Tseitin(f) denote the generated CNF formula
• Size of Tseitin(f) is linear in the size of f
• Tseitin(f) is equi-satisfiable with f

• i.e., Tseitin(f) is satisfiable if and only if f is satisfiable
18

Equation CNF to implement the Equation
z = NOT x (x || z) && (x’ || z’)
z = x && y (x || z’) && (y || z’) && (x’ || y’ || z)
z = x || y (x’ || z) && (y’ || z) && (x || y || z’)

Boolean circuit to CNF

a
b d e

c

(a || b || d’)
(a’ || d)
(b’ || d)

d º (a || b)
(c’ || d’ || e)
(d || e’)
(c || e’)

e º (c && d)
Tseitin rules

linear time conversion of any
Boolean circuit into CNF
using auxiliary variables

19

Tseitin transformation for Boolean (combinational) circuits

OR AND

Applications of SAT
• Checking circuit equivalence

• SAT solver checks over all inputs (without enumeration)!

20

Circuit C1

Circuit C2

o1

o2

Formula f:
CNF(C1) && CNF(C2) && (o1 || o2) && (o1’ || o2’)

Use a SAT solver to check if formula f is satisfiable
• If f is satisfiable, then C1 and C2 are not equivalent
• If f is unsatisfiable, then C1 and C2 are equivalent

inputs

Given the same inputs,
are outputs o1 and o2 equivalent?

o1 is NOT equivalent to o2

Another application

21

Automatic test generation

SAT solvers are used for automatically generating test inputs!
• Represent int variables in programs as 64-bit bitvectors
• Construct formula for checking satisfiability of path-condition
• Use SMT solvers, e.g., Z3 (which uses SAT solver for bitvectors)

• Suppose you are testing a program to check
if the assert can fail

• Note that the assert can fail only when c1 is
true, c2 is false, c3 is true, and c4 is false.

• It may be difficult to manually come up with
such an input

if (c1) then {
if (c2) then {
…
else if (c3) then {

…
assert(c4)
…

}
}}

SAT solvers: a condensed history
Deductive

• Davis-Putnam 1960 [DP]
• Based on “resolution”

Ø Backtracking Search
• Davis, Putnam, Logemann and Loveland 1962 [DLL, DPLL]
• Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
• GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
• Emphasis on exhausting local sub-spaces, e.g., Chaff, 2001
• Added focus on efficient implementations

“Pre-processing”
• Peephole optimization, e.g., MiniSat, 2005

…
22

Basic DPLL Search

Performs backtracking search over variable assignments
• We will represent the formula in CNF

• Implicitly a set of clauses (ie, the AND is implicit)
• We will make “decisions” by assigning values to variables
• We will keep track of a “decision tree” that records the current partial

assignment to variables
• We will “backtrack” when the latest decision cannot lead to a

satisfying assignment (“solution”)

During the search:
• If all clauses are satisfied, we have found a satisfying assignment

(and can terminate)
• If we have exhausted all possible assignments without finding a

solution, then the formula is unsatisfiable 23

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394–397, 1962

Basic DPLL Search

Definitions: under a given partial assignment (PA)
• A variable may be

• assigned (true or false literal)
• unassigned

• A clause may be
• satisfied (≥1 true literal)
• unsatisfied (all false literals)
• unit (one unassigned literal, rest false)
• unresolved (otherwise)

24

Basic DPLL Search

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

a

25

+ denotes OR
’ denotes NOT

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Ü Decision
→

→
→

26

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0 Ü Decision

→

27

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 Ü Decision

→
→

28

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Unit →

BCP: Boolean Constraint Propagation
repeatedly applies Unit Clause Rule

If all but one literals in a clause are false,
then the remaining literal is implied to true.

29

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Unit →

d=1

BCP: Boolean Constraint Propagation
repeatedly applies Unit Clause Rule

d=1 is implied at level 3

If all but one literals in a clause are false,
then the remaining literal is implied to true.

30

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Unit
→
→

d=1,d=0

31

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

→
→

Conflict!

d=1,d=0

32

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Backtrack

→
→
→
→

33

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1 Ü Forced Decision

→
→

34

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1 Ü Forced Decision

→
→

d=1,d=0

Conflict!

35

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

Ü Backtrack

→
→
→
→

36

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

Ü Backtrack

→

37

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

1 Ü Forced Decision

38

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

Ü Decision

→
→
→
→
→

d=1,d=0

Conflict!

39

Note: same two clauses are unit (as before)
cause the same conflict!

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

Ü Backtrack

→
→
→
→
→

40

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

Ü Forced Decision

→
→
→

d=1,d=0

Conflict!

41

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

Ü Backtrack
→
→
→
→
→

42

Ü Backtrack

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

Ü Backtrack
→

→
→

43

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1 Ü Forced Decision→
→
→
→

44

(a’ + b’ + c)

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)

b
0

c
0 1

c
0 1

1

1

b
1 Ü Decision

→

→
→

c=1

Implication

45

(a’ + b’ + c)

Basic DPLL Search

a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)

b
0

c
0 1

c
0 1

1

1

b

1

0

→ c=1,d=1
Implication

46

Basic DPLL Search

a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b

1

Ü SAT

0

→
c=1,d=1

Backtracking search
with BCP (unit clause rule)

47

DPLL SAT Solver

Much research, many heuristics over >40 years …
48

DPLL(F)
G ← BCP(F)
if G = ⟙ then return true
if G = ⟘ then return false
p ← choose(vars(G))
return DPLL(G{p ↦ ⟙}) = “SAT” or DPLL(G{p ↦ ⟘})

unit clause rule

decision heuristics

backtracking search

DPLL(F)
G ← BCP(F)
if G = ⟙ then return true
if G = ⟘ then return false
p ← choose(vars(G))
return DPLL(G{p ↦ ⟙}) = “SAT” or DPLL(G{p ↦ ⟘})

Poor scalability: why?

49

No learning:
Throws away all the work that
concluded that current PA is bad

Naïve decision heuristics:
Usually choice is independent
of “state” of search

Chronological backtracking:
backtracks one level, even if current
PA was doomed at an earlier level

JRW project ideas!

SAT/SMT Timeline

SAT: is a Boolean formula f satisfiable?

SMT (Satisfiability Modulo Theory):

is a first-order logic formula theory-satisfiable?
2004

DPLL(T)

2008
Z3

2009
SMT

1960
DP

»10 var

1962
DLL

» 10 var

1952
Quine
» 10 var

1986
BDD

» 100 Var

(Source: Sharad Malik)

1988
SOCRATES
» 3k Var

2001
Chaff

»10k var

2003
MiniSAT
»10k var

1996
GRASP
»1k Var

1997
SATO
» 1k Var

1996
Stålmarck
» 1k Var

50

Conflict Driven Clause Learning
Non-chronological backtracking

VSIDS decision heuristic,
2-literal watching in BCP

SAT solvers in verification

interpolation

proof theory
temporal logic model checking

compiler
correctness

decision procedures

program
verification

resolution

SMT
B

M
C

equivalence
checking

complexity symbolic
simulation

predicate

abstraction

51

COS 516 covers many of these topics

Optional Readings

Sharad Malik, Lintao Zhang:
Boolean satisfiability from theoretical hardness to practical
success. Communications of the ACM 52(8): 76-82 (2009)

Leonardo Mendonça de Moura, Nikolaj Bjørner:
Satisfiability modulo theories: introduction and
applications. Communications of the ACM 54(9): 69-77 (2011)

52

