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What is SAT?
Given a propositional logic (Boolean) formula, 

find a variable assignment such that the formula evaluates to true, 
or prove that no such assignment exists.

For n variables, there are 2n possible truth assignments to be checked.

First established NP-Complete problem.
S. A. Cook, The complexity of theorem proving procedures, Proceedings, 
Third Annual ACM Symp. on the Theory of Computing,1971, 151-158
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||  denotes OR
&&  denotes AND
’  denotes NOT



SAT and logics
Propositional logic is a subset of

• First order logic
• Higher-order logic

Validity of formulas (i.e., checking if all variable assignments 
make the formula true) 

• Propositional logic: decidable
• First order logic: semi-decidable 
• Arithmetic and higher-order logic: undecidable 

Complexity of SAT: NP-complete
• There is no known polynomial-time algorithm
• … but often tractable in practice on real-world problems!
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Why is it of interest now?
SAT: is a Boolean formula f satisfiable?

SMT (Satisfiability Modulo Theory):

is a first-order logic formula theory-satisfiable?
2004

DPLL(T)

2008
Z3

2009
SMT

1960
DP

»10 var

1962
DLL

» 10 var

1952
Quine
» 10 var

1986
BDD

» 100 Var

(Source: Sharad Malik)

1988
SOCRATES
» 3k Var

2001
Chaff

»10k var

2003
MiniSAT
»10k var

1996
GRASP
»1k Var

1997
SATO
» 1k Var

1996
Stålmarck
» 1k Var
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Where are we today?
Intractability of the problem no longer daunting

• can regularly solve practical instances with millions of variables 
and constraints

SAT has matured from theoretical interest to practical impact
• Electronic Design Automation (EDA)

• Widely used in many aspects of chip design: equivalence checking, 
assertion verification, synthesis, debugging, post-silicon validation

• Software verification
• Commercial use at Microsoft, Amazon, Google, Facebook, …

• AI and Planning problems

• CAV 2009 Award due to industrial impact
• Chaff solver team from Princeton shared the award!
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Where are we today? 

Significant SAT community
• SatLive Portal (http://www.satlive.org/)
• Annual SAT competitions (http://www.satcompetition.org/)
• SAT Conference (http://www.satisfiability.org/)

Emboldened researchers to take on even harder problems 
related to SAT

• Max-SAT: for optimization
• Satisfiability Modulo Theories (SMT): for more expressive theories
• Quantified Boolean Formulas (QBF): for more complex problems

• Many ideas from SAT solvers are applied here
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http://www.satisfiability.org/


Some basics first …
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Boolean formulas: Syntax

Formula f = // inductive definition

true | false | // base cases: constants

v | // base case: variable

NOT g  |  g AND h  |  g OR h   // inductive cases

where

v is a propositional variable, i.e., it takes value true or false

NOT, AND, OR are the usual Boolean operators
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Boolean formulas: Semantics
Given a Boolean formula f,

and an Interpretation M, which maps variables to true/false

We can evaluate f under M to produce a Boolean result (true or false).
• Base case true: return true
• Base case false: return false
• Base case variable v: return value of v in M
• Inductive cases: return result by using the truth tables shown below

Example: Evaluate f: (a OR b) AND (NOT c) under M:{a ↦ true, b ↦ false, c ↦ false}

f = (1 OR 0) AND (NOT 0)          … f evaluates to true under M
9

g Not g
0 1
1 0

0  denotes false
1  denotes true

g h g AND h
0 0 0
0 1 0
1 0 0
1 1 1

g h g OR h
0 0 0
0 1 1
1 0 1
1 1 1



Boolean formulas: Semantics
Given a Boolean formula f,

and an Interpretation M, which maps variables to true/false

If f evaluates to true under M, we say that M satisfies f

Example: f: (a || b) && (a’ || b’ || c), M1: {a ↦ true, b ↦ true, c ↦ false}

(Q1) Does M1 satisfy f? 

No, because f evaluates to false under M1.

(Q2) Is f satisfiable, i.e., does there exist an M such that M satisfies f?

Yes, f is satisfiable.

For example, M2: {a ↦ true, b ↦ true, c ↦ true} satisfies f

SAT solvers can automatically find a satisfying interpretation! (if it exists)
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||  denotes OR
&&  denotes AND
’  denotes NOT



SAT solvers: a condensed history
Deductive 

• Davis-Putnam 1960 [DP]
• Based on “resolution”

Backtracking Search
• Davis, Putnam, Logemann and Loveland 1962 [DLL, DPLL]
• Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
• GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
• Emphasis on exhausting local sub-spaces, e.g., Chaff, 2001
• Added focus on efficient implementations

“Pre-processing”
• Peephole optimization, e.g., MiniSat, 2005

…
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Princeton Senior Thesis!



SAT problem representation
Boolean formulas represented in:             
Conjunctive Normal Form (CNF)

• for formula to be true: each clause must be satisfied
• in each clause: some literal must be true

(a || b || c) && (a’ || b’|| c) && (a’|| b || c’) && (a || b’ || c’)

clause: is a disjunction of literals

formula: is a conjunction of clauses

literal: is a variable or its negation
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e.g., (a || b’ || c’)

e.g., a, a’



CNF Representation
Q: Can any Boolean formula be converted to CNF?

Yes!

Q: How can I convert a Boolean formula to CNF?

Many different translations exist …

You will explore two translations in Assignment 3

1. A naïve translation based on de Morgan’s Laws

2. Tseitin transformation (useful for checking SAT)
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Translation to CNF 
We can view CNF as a special kind of expression tree for a 

Boolean formula

CNF has maximum 3 levels, where
• top-level node is AND
• second-level nodes are OR
• NOT (i.e., negation) can be optionally applied only at the leaves
• leaf level nodes are variables (with/without negation)

Example: (x1 || x3’ || x4) && (x2 || x3’ || x4) is in CNF
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||

&&

x1 x4x3’

||

x2 x4x3’

||  denotes OR
&&  denotes AND
’  denotes NOT



(1) Naïve Translation to CNF 
Given an arbitrary expression tree for a Boolean formula

• #1: Push NOT nodes inside an AND or OR

• #2: Distribute outer OR nodes over an inner AND
(p && q) || (x && y) = (p || x) && (p || y) && (q || x) && (q || y)

• Simplifications
• NOT(NOT p) = p
• Nested AND nodes to a single AND (when possible)
• Nested OR nodes to a single OR node (when possible)

Correctness of Naïve translation
• The generated CNF formula is equivalent to the given formula
• However, its size can be exponentially bigger L
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de Morgan’s Laws
NOT (p || q) = (NOT p) && (NOT q)
NOT (p && q) = (NOT p) || (NOT q)



(1) Naïve translation to CNF: Example
Example: (x1 && x2) || (NOT (x3 && NOT x4))

= (x1 && x2) || (NOT x3 || NOT(NOT x4))           … #1

= (x1 && x2) || (NOT x3 || x4)    … NOT simplification

= (x1 || NOT x3 || x4) && (x2 || NOT x3 || x4)     … #2

= (x1 || x3’ || x4) && (x2 || x3’ || x4)
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&& NOT

x3 NOT

#1

x1 x2

x4
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&&

Original formula

||

&&

x1 x4x3’

||

x2 x4x3’

CNF representation



Tseitin Transformation Example
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||

&& NOT

x3 NOT

x1 x2

x4

&&

Original formula

y1

y2

y3

y4

New variables: y1, y2, y3, y4, y5
Equations
y1 = x1 && x2
y2 = y1 || y3
y3 = NOT y4
y4 = x3 && y5
y5 = NOT x4

y5

CNF
(x1 || y1’) && (x2 || y1’) && (x1’ || x2’ || y1) &&
(y1’ || y2) && (y3’ || y2) && (y1 || y3 || y2’) &&
(y3 || y4) && (y3’ || y4’) &&
(x3 || y4’) && (y5 || y4’) && (x3’ || y5’ || y4) &&
(x4 || y5) && (x4’ || y5’) &&
(y2)

Equation       CNF to implement the Equation 
z = NOT x     (x || z) && (x’ || z’) 
z = x && y     (x || z’) && (y || z’) && (x’ || y’ || z)
z = x || y        (x’ || z) && (y’ || z) && (x || y || z’)

Main idea: Introduce fresh variable for 
each subformula and write ”equations”



(2) Tseitin Transformation
Main idea: Introduce new (fresh) variables for each subformula

• Write ”equations”: new variable = subformula
• Generate CNF for each equation, depending on the operator, as follows:

• AND together the CNFs for all equations
• AND a clause with a single literal for the top-level formula (if you want to 

check satisfiability of the top-level formula)

Correctness of Tseitin transformation
• For a given formula f, let Tseitin(f) denote the generated CNF formula
• Size of Tseitin(f) is linear in the size of f
• Tseitin(f) is equi-satisfiable with f

• i.e., Tseitin(f) is satisfiable if and only if f is satisfiable
18

Equation       CNF to implement the Equation 
z = NOT x     (x || z) && (x’ || z’) 
z = x && y     (x || z’) && (y || z’) && (x’ || y’ || z)
z = x || y        (x’ || z) && (y’ || z) && (x || y || z’)



Boolean circuit to CNF

a
b d e

c

(a || b || d’)
(a’ || d)
(b’ || d)

d º (a || b)
(c’ || d’ || e)
(d || e’)
(c || e’)

e º (c && d)
Tseitin rules

linear time conversion of any
Boolean circuit into CNF
using auxiliary variables
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Tseitin transformation for Boolean (combinational) circuits

OR AND



Applications of SAT
• Checking circuit equivalence

• SAT solver checks over all inputs (without enumeration)!
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Circuit C1

Circuit C2

o1 

o2 

Formula f:
CNF(C1) && CNF(C2) && (o1 || o2) && (o1’ || o2’)

Use a SAT solver to check if formula f is satisfiable
• If f is satisfiable, then C1 and C2 are not equivalent
• If f is unsatisfiable, then C1 and C2 are equivalent

inputs 

Given the same inputs, 
are outputs o1 and o2 equivalent?

o1 is NOT equivalent to o2



Another application
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Automatic test generation

SAT solvers are used for automatically generating test inputs!
• Represent int variables in programs as 64-bit bitvectors
• Construct formula for checking satisfiability of path-condition
• Use SMT solvers, e.g., Z3 (which uses SAT solver for bitvectors)

• Suppose you are testing a program to check 
if the assert can fail

• Note that the assert can fail only when c1 is 
true, c2 is false, c3 is true, and c4 is false.

• It may be difficult to manually come up with 
such an input

if (c1) then {
if (c2) then {
…
else if (c3) then {

…
assert(c4)
…

}
}}



SAT solvers: a condensed history
Deductive 

• Davis-Putnam 1960 [DP]
• Based on “resolution”

Ø Backtracking Search
• Davis, Putnam, Logemann and Loveland 1962 [DLL, DPLL]
• Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
• GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
• Emphasis on exhausting local sub-spaces, e.g., Chaff, 2001
• Added focus on efficient implementations

“Pre-processing”
• Peephole optimization, e.g., MiniSat, 2005

…
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Basic DPLL Search

Performs backtracking search over variable assignments
• We will represent the formula in CNF

• Implicitly a set of clauses (ie, the AND is implicit)
• We will make “decisions” by assigning values to variables
• We will keep track of a “decision tree” that records the current partial 

assignment to variables
• We will “backtrack” when the latest decision cannot lead to a 

satisfying assignment (“solution”)

During the search:
• If all clauses are satisfied, we have found a satisfying assignment 

(and can terminate)
• If we have exhausted all possible assignments without finding a 

solution, then the formula is unsatisfiable 23

M. Davis, G. Logemann, and D. Loveland. A machine program for 
theorem-proving. Communications of the ACM, 5:394–397, 1962



Basic DPLL Search

Definitions: under a given partial assignment (PA)
• A variable may be

• assigned (true or false literal)
• unassigned

• A clause may be
• satisfied (≥1 true literal)
• unsatisfied (all false literals)
• unit (one unassigned literal, rest false)
• unresolved (otherwise)
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Basic DPLL Search

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

a

25

+  denotes OR
’  denotes NOT



Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Ü Decision
→

→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0 Ü Decision

→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 Ü Decision

→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Unit →

BCP: Boolean Constraint Propagation
repeatedly applies Unit Clause Rule

If all but one literals in a clause are false, 
then the remaining literal is implied to true.
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Unit →

d=1

BCP: Boolean Constraint Propagation
repeatedly applies Unit Clause Rule

d=1 is implied at level 3

If all but one literals in a clause are false, 
then the remaining literal is implied to true.
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Unit
→
→

d=1,d=0
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

→
→

Conflict!

d=1,d=0
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

Ü Backtrack

→
→
→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1 Ü Forced Decision

→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1 Ü Forced Decision

→
→

d=1,d=0

Conflict!
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

Ü Backtrack

→
→
→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

Ü Backtrack

→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

1 Ü Forced Decision
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

Ü Decision

→
→
→
→
→

d=1,d=0

Conflict!
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Note: same two clauses are unit (as before)
cause the same conflict!



Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

Ü Backtrack

→
→
→
→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

Ü Forced Decision

→
→
→

d=1,d=0

Conflict!
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

Ü Backtrack
→
→
→
→
→
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Ü Backtrack



Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

Ü Backtrack
→

→
→
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Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1 Ü Forced Decision→
→
→
→
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(a’ + b’ + c)

Basic DPLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)

b
0

c
0 1

c
0 1

1

1

b
1 Ü Decision

→

→
→

c=1

Implication
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(a’ + b’ + c)

Basic DPLL Search

a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)

b
0

c
0 1

c
0 1

1

1

b

1

0

→ c=1,d=1
Implication
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Basic DPLL Search

a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b

1

Ü SAT

0

→
c=1,d=1

Backtracking search
with BCP (unit clause rule)

47



DPLL SAT Solver

Much research, many heuristics over >40 years …
48

DPLL(F)
G ← BCP(F)
if G = ⟙ then return true
if G = ⟘ then return false
p ← choose(vars(G))
return DPLL(G{p ↦ ⟙}) = “SAT” or DPLL(G{p ↦ ⟘})

unit clause rule

decision heuristics

backtracking search



DPLL(F)
G ← BCP(F)
if G = ⟙ then return true
if G = ⟘ then return false
p ← choose(vars(G))
return DPLL(G{p ↦ ⟙}) = “SAT” or DPLL(G{p ↦ ⟘})

Poor scalability: why?

49

No learning:
Throws away all the work that 
concluded that current PA is bad

Naïve decision heuristics:
Usually choice is independent 
of “state” of search

Chronological backtracking: 
backtracks one level, even if current 
PA was doomed at an earlier level

JRW project ideas!



SAT/SMT Timeline

SAT: is a Boolean formula f satisfiable?

SMT (Satisfiability Modulo Theory):

is a first-order logic formula theory-satisfiable?
2004

DPLL(T)

2008
Z3

2009
SMT

1960
DP

»10 var

1962
DLL

» 10 var

1952
Quine
» 10 var

1986
BDD

» 100 Var

(Source: Sharad Malik)

1988
SOCRATES
» 3k Var

2001
Chaff

»10k var

2003
MiniSAT
»10k var

1996
GRASP
»1k Var

1997
SATO
» 1k Var

1996
Stålmarck
» 1k Var
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Conflict Driven Clause Learning 
Non-chronological backtracking

VSIDS decision heuristic, 
2-literal watching in BCP



SAT solvers in verification 

interpolation

proof theory
temporal logic model checking

compiler
correctness

decision procedures

program
verification

resolution

SMT
B

M
C

equivalence 
checking

complexity symbolic
simulation

predicate

abstraction

51

COS 516 covers many of these topics



Optional Readings

Sharad Malik, Lintao Zhang:
Boolean satisfiability from theoretical hardness to practical 
success. Communications of the ACM 52(8): 76-82 (2009)

Leonardo Mendonça de Moura, Nikolaj Bjørner:
Satisfiability modulo theories: introduction and 
applications. Communications of the ACM 54(9): 69-77 (2011)
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