
Parallel Sequences

Credits:
Dan Grossman, UW

http://homes.cs.washington.edu/~djg/teachingMaterials/spac
Blelloch, Harper, Licata (CMU, Wesleyan)

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2018-20 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Last Time: Parallel Programming Disciplines

Programming with shared mutable data is very hard!

With pure functional code and parallel futures, many error
modes disappear

Are there more great abstractions like futures?
– you betcha!

What if you had a really big job to do?
Example: Create an index of every web page on the planet.

– Google does that regularly!
– There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:
– how do we distribute work across all those computers?
– you definitely can't use shared-memory parallelism because the

computers don't share memory!
– when you use 1 computer, you just hope it doesn't fail. If it

does, you go to the store, buy a new one and restart the job.
– when you use 1000s of computers at a time, failures become the

norm. what to do when 1 of 1000 computers fail? Start over?

Big Jobs ---> Better Abstractions

Need high-level interfaces to shield application programmers
from the complex details. Complex implementations solve the
problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter

COMPLEXITY OF
PARALLEL ALGORITHMS

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

dependence:
x = 1 + 2 happens before 3 + x

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

Execution of dependency diagrams: A processor can only begin executing the
computation associated with a block when the computations of all of its
predecessor blocks have been completed.

Visualizing Computational Costs

step 1:
execute first block x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 0

Visualizing Computational Costs

step 1:
execute first block x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1

Visualizing Computational Costs

step 2:
execute second block
because all of its
predecessors have
been completed

x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1

Visualizing Computational Costs

step 2:
execute second block
because all of its
predecessors have
been completed

x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1 + 1

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

total cost
= 1 + 1
= 2

Visualizing Computational Costs

(1 + 2 || f 3)

parallel pair:
compute both left and right-hand sides independently
return pair of values
(easy to implement using futures)

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?
Schedule A-B-C-D: 1 + 1 + 7 + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?
Schedule A-C-B-D: 1 + 1 + 7 + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1 + max(1,7)

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1 + max(1,7) + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Total cost: 1 + max(1,7) + 1. We say the schedule we used was: A-CB-D

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 3 processors. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 3 processors. How much time does this computation take?
Schedule A-BC-D: 1 + max(1,7) + 1 = 9

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have infinite processors. How much time does this computation take?
Schedule A-BC-D: 1 + max(1,7) + 1 = 9

A

B C

D

Work and Span
Understanding the complexity of a parallel program is a little
more complex than a sequential program

– the number of processors has a significant effect

One way to approximate the cost is to consider a parallel
algorithm independently of the machine it runs on is to consider
two metrics:

– Work: The cost of executing a program with just 1 processor.
– Span: The cost of executing a program with an infinite number

of processors

Always good to minimize work
– Every instruction executed consumes energy
– Minimize span as a second consideration
– Communication costs are also crucial (we are ignoring them)

Parallelism
The parallelism of an algorithm is an estimate of the maximum
number of processors an algorithm can profit from.
• parallelism = work / span

If work = span then parallelism = 1.
• We can only use 1 processor
• It's a sequential algorithm

If span = ½ work then parallelism = 2
• We can use up to 2 processors

If work = 100, span = 1
• All operations are independent & can be executed in parallel
• We can use up to 100 processors

Series-Parallel Graphs

Series-parallel graphs arise from execution of functional programs with
parallel pairs. Also known as well-structured, nested parallelism.

one operation two operations
in sequence

e1; e2

two operations
in parallel
(e1 || e2)

Parallel Pairs

f x g y

let both f x g y =
let ff = future f x in
let gv = g y in
(force ff, gv)

Series-Parallel Graphs Compose

In general, a series-parallel graph has a source and a sink and is:
• a single node, or
• two series-parallel graphs in sequence, or
• two series-parallel graphs in parallel

one operation two graphs
in sequence

two graphs
in parallel

Not a Series-Parallel Graph

However:
The results about
greedy schedulers
(next few slides)
do apply to DAG
schedules as well
as series-parallel

schedules!

Work and Span of Acyclic Graphs
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from
source to sink.

Work and Span of Acyclic Graphs
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from
source to sink.

work = 10
span = 5

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J F
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J F
F

Conclusion:
How you schedule
jobs can have an
impact on performance

Greedy Schedulers
Greedy schedulers will schedule some task to a processor as
soon as that processor is free.

– Doesn't sound so smart!

Greedy Schedulers
Greedy schedulers will schedule some task to a processor as
soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):
– T(p) < work/p + span

• won't be worse than dividing up the data perfectly between
processors, except for the last little bit, which causes you to add
the span on top of the perfect division

– T(p) >= max(work/p, span)
• can't do better than perfect division between processors (work/p)
• can't be faster than span

Greedy Schedulers
Properties (for p processors):

max(work/p, span) <= T(p) < work/p + span

Consequences:
– as span gets small relative to work/p

• work/p + span ==> work/p
• max(work/p, span) ==> work/p
• so T(p) ==> work/p -- greedy schedulers converge to the optimum!

– if span approaches the work
• work/p + span ==> span
• max(work/p, span) ==> span
• so T(p) ==> span – greedy schedulers converge to the optimum!

And therefore
Even though greedy schedulers are simple to implement,

they can be effective in building a parallel programming system.

and

This supports the idea that work and span are useful ways to
reason about the cost of parallel programs.

PARALLEL SEQUENCES

Parallel Sequences
Parallel sequences

Operations:
– creation (called tabulate)
– indexing an element in constant span
– map
– scan -- like a fold: <u, u + e1, u + e1 + e2, ...> log n span!

Languages:
– Nesl [Blelloch]
– Data-parallel Haskell

< e1 , e2 , e3 , ... , en >

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

length : 'a seq -> int

length <e0, e1, ..., e(n-1)> == n
work = O(1) span = O(1)

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* create n == <0, 1, ..., n-1> *)
let create n =

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* create n == <0, 1, ..., n-1> *)
let create n =
tabulate (fun i -> i) n

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =
tabulate (fun i -> f (nth s i)) (length s)

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
let n = length s in
tabulate (fun i -> nth s (n-i-1)) n

A Parallel Sequence API

type 'a seq

tabulate : (int -> 'a) -> int -> 'a seq

length : 'a seq -> int

nth : 'a seq -> int -> 'a

append : 'a seq -> 'a seq -> 'a seq

split : 'a seq -> int -> 'a seq * 'a seq

O(N)

Work Span

O(1)

O(1)

O(N+M)

O(N)

O(1)

O(1)

O(1)

O(1)

O(1)

For efficient implementations, see Blelloch's NESL project:
http://www.cs.cmu.edu/~scandal/nesl.html

(can build this from tabulate, nth, length)

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0sum:

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0 7sum:

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0 7 231411sum: 31

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

let sum_all (l:int list) = reduce (+) 0 l

7 4 3 9 8

0 7 231411sum: 31

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

Key to parallelization: Notice that because sum is an associative
operator, we do not have to add the elements strictly left-to-right:

let sum_all (l:int list) = reduce (+) 0 l

7 4 3 9 8

0 7 231411sum: 31

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)

add on processor 1 add on processor 2

Side Note

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)

add on processor 1 add on processor 2

The key is associativity:

Commutativity allows us to reorder the elements:
v1 + v2 == v2 + v1

But we don't have to reorder elements to obtain a significant speedup;
we just have to reorder the execution of the operations.

Commutativity not needed!

Parallel Sum

7 4 3 9 8 2 12

Parallel Sum

7 4 3 9 8 2 12

9 8 2 17 4 32

Parallel Sum

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

Parallel Sum

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

2 7 4 3 9 8 2 1

Parallel Sum

31779

2 7 4 3 9 8 2 1

+ + ++

Parallel Sum

2 7 4 3 9 8 2 1

++

+

+ + ++

31779

16 20

36

Parallel Sum

let rec psum (s : int seq) : int =
match length s with
0 -> 0

| 1 -> nth s 0
| n ->

let (s1,s2) = split (n/2) s in
let (a1, a2) = both psum s1

psum s2 in
a1 + a2

let both f x g y =
let ff = future f x in
let gv = g y in
(force ff, gv)

Parallel Reduce

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

2 7 4 3 9 8 2 1

op

op

op op op op

op

If op is associative and the base case has the properties:
op base X == X op X base == X

then the parallel reduce is equivalent to the sequential left-to-right fold.

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
match length s with
0 -> base

| 1 -> nth s 0
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both (reduce f base) s1

(reduce f base) s2 in
f n1 n2

Parallel Reduce

let sum s = reduce (+) 0 s

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
match length s with
0 -> base

| 1 -> nth s 0
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both (reduce f base) s1

(reduce f base) s2 in
f n1 n2

A little more general

let rec mapreduce (inject: 'a -> 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) =

match length s with
0 -> base

| 1 -> inject (nth s 0)
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both

(mapreduce inject combine base) s1
(mapreduce inject combine base) s2 in

combine n1 n2

A little more general
let rec mapreduce (inject: 'a -> 'b)

(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) =

match length s with
0 -> base

| 1 -> inject (nth s 0)
| n ->

let (s1,s2) = split (n/2) s in
let (n1, n2) = both

(mapreduce inject combine base) s1
(mapreduce inject combine base) s2 in

combine n1 n2

let average s =
let (count, total) =
mapreduce (fun x -> (1,x))

(fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
(0,0) s in

if count = 0 then 0 else total / count

DON’T PARALLELIZE
AT TOO FINE A GRAIN

Parallel Reduce with Sequential Cut-off
When data is small, the overhead of parallelization isn't worth it.
Revert to the sequential version!

let SHORT = 1000

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
if length s < SHORT
then sequential_reduce f base s
else let (s1,s2) = split ((length s)/2) s in

let (n1, n2) = both (reduce f base) s1
(reduce f base) s2 in

f n1 n2

let sequential_reduce f base (s:'a seq) =
let rec g i x =

if i<0 then x else g (i-1) (f (nth a i) x)
in g (length s – 1)

