Type Checking
Part 3: Type Inference (Simple Types)

Speaker: David Walker
COS 326 R ods

[l
SVE NVMINE -

Princeton University

C L)
slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Robin Milner: Turing Award Winner 1991]

For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable
Functions, probably the first theoretically based yet
practical tool for machine assisted proof construction;

2. ML, the first language to include polymorphic type
inference together with a type-safe exception-

handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full
Robin Milner abstraction, the study of the relationship between
operational and denotational semantics.

We will be studying Hindley-Milner type inference. |
Discovered by Hindley, rediscovered by Milner. Formalized by Damas. d \I
Broken several times when effects were added to ML.)

Language Design for Type Inference

The ML language and type system is designed to support a very
strong form of type inference.

let rec map £ 1 =
match 1 with
[1 > []
| hd::tl -> £ hd :: map £ tl

It’s very convenient we don’t have to annotate f and | with their
types, as is required by our type checking algorithm.

Language Design for Type Inference

The ML language and type system is designed to support a very
strong form of type inference.

let rec map £ 1 =
match 1 with
[1 > []
| hd::tl -> £ hd :: map £ tl

ML finds this type for map:

map : ('a -> 'b) -> 'a list -> 'b list

Language Design for Type Inference

The ML language and type system is designed to support a very
strong form of type inference.

let rec map £ 1 =
match 1 with
[1 > []
| hd::tl -> £ hd :: map £ tl

ML finds this type for map:

map : ('a -> 'b) -> 'a list -> 'b list

which is really an abbreviation for this type:

map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list

Language Design for Type Inference

map : ('a -> 'b) -> 'a list -> 'b list

We call this type the principal type (scheme) for map.

Any other ML-style type you can give map is an instance of this type,
meaning we can obtain the other types via substitution of types for
parameters from the principle type.

E.g.: (bool -> int) -> bool list -> int list

('a -> int) -> 'a list -> int 1list

('a => 'a) -> 'a list -> 'a list

[Language Design for Type Inference

Principal types are great:

* the type inference engine can make a best choice for the type to
give an expression

* the engine doesn't have to guess (and won't have to guess wrong)

The fact that principal types exist is surprisingly brittle. If you change
ML's type system a little bit in either direction, it can fall apart.

[Language Design for Type Inference

Suppose we take out polymorphic types and need a type for id:

let 1d x = x

Then the compiler might guess that id has one (and only one) of
these types:

id : bool —-> bool

id : int -> int

|

Language Design for Type Inference

Suppose we take out polymorphic types and need a type for id:

let 1d x = x

Then the compiler might guess that id has one (and only one) of
these types:

id : bool —-> bool

id : int -> int

But later on, one of the following code snippets won't type check:

id true id 3

So whatever choice is made, a different one might have been be/ .

[Language Design for Type Inference

We showed that removing types from the language causes a failure
of principal types.

Does adding more types always make type inference easier?

[Language Design for Type Inference

We showed that removing types from the language causes a failure
of principle types.

Does adding more types always make type inference easier?

[Language Design for Type Inference

OCaml has universal types on the outside (“prenex quantification”):

forall 'a,’b. (('a -> 'b) -> 'a list -> 'b list)

It does not have types like this:

(forall 'a.'a —> int) -> int -> bool

\

argument type has its own polymorphic quantifier

|

Language Design for Type Inference

Consider this program:

let £ g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int

|

Language Design for Type Inference

Consider this program:

let £ g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int

Does the following type work?

f: (‘a -> int) -> int * int

[Language Design for Type Inference

Consider this program:

let £ g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int

Does the following type work?

f: (‘a -> int) -> int * int

NO: this says g’s argument can be any type ‘a (it could be int or bool)

Consider g is (fun x -> x + 2) : int -> int.
Unfortunately, f g goes wrong when g applied to true inside f.

[Language Design for Type Inference

Consider this program again:

let £ g = (g true, g 3)

We might want to give it this type:

f : (forall a.a->a) -> bool * int

Notice that the universal quantifier appears left of ->

[Language Design for Type Inference]

System F is a lot like OCaml, except that it allows universal quantifiers
in any position. It could type check f.

let £ g = (g true, g 3)

f : (forall a.a->a) -> bool * int

Unfortunately, type inference in System F is undecidable.

[Language Design for Type Inference]

System F is a lot like OCaml, except that it allows universal quantifiers
in any position. It could type check f.

let £ g = (g true, g 3)

f : (forall a.a->a) -> bool * int

Unfortunately, type inference in System F is undecideable.

Developed in 1972 by logician Jean Yves-Girard
who was interested in the consistency
of a logic of 2"d-order arithmetic.

Rediscovered as programming language
by John Reynolds in 1974. = Al =)

John C. Reynolds (John Barna photo)

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

f : int -> int °?

f : float -> float 2

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

f : int -> int °?

f : float -> float 2

f : 'a -—> 'a ?

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

f : int -> int °?

f : float -> float 2

f : 'a -—> 'a ?

No type in OCaml's type system works. In Haskell:

f : Num 'a => 'a -> 'a —

THE TYPE INFERENCE ALGORITHM

Type Schemes

A type scheme contains type variables that may be filled in
during type inference

s:=a|int| bool|s->s

A term scheme is a term that contains type schemes rather than
proper types. eg, for functions:

fun (x:s) >e

let recf (x:s):s=e

Two Algorithms for Inferring Types

Algorithm 1:

* Declarative; generates constraints to be solved later
e Easier to understand

* Easier to prove correct

* Less efficient, not used in practice

Algorithm 2:

* Imperative; solves constraints and updates as-you-go
* Harder to understand

* Harder to prove correct

 More efficient, used in practice

* See: http://okmij.org/ftp/ML/generalization.html

Algorithm 1

1) Add distinct variables in all places type schemes are needed

2) Generate constraints (equations between types) that must be
satisfied in order for an expression to type check
* Notice the difference between this and the type checking
algorithm from last time. Last time, we tried to:
* eagerly deduce the concrete type when checking every expression
* reject programs when types didn't match. eg:

fe --f'sargumenttype must equal e

e This time, we'll collect up equations like:

(a->b)=c

3) Solve the equations, generating substitutions of types for

variables or finding that the equations can't be solved :

Example: Inferring types for map

let rec map £ 1 =
match 1 with
[] => []
| hd::tl1l -> £ hd :: map £ tl

Step 1: Annotate

let rec map (f:a) (l:b) : c =
match 1 with
[] > []
| hd::tl ->
f hd :: map £ tl

Step 2: Generate Constraints

let rec map (f:a) (l:b) : c =
match 1 with
[] > []

b = d list
a = d —> e

| hd ::tl ->
f hd :: map £ tl

Step 2: Generate Constraints

let rec map (f:a) (l:b) : c =
match 1 with

[1 -> [] final,con'straints:
b = b list
| hd::tl -> £ hd :: map £ tl |y = v’ 1ist
b =Db’’ list
a = a
b =Db’’ list
a=Db’ ->a
c = c 1list
a’ = C
d list = ¢ 1list
: _ /|
d list [? ;
|

Step 3: Solve Constraints

let rec map
match 1 with

[]

(f:a)

-> []
hd::tl

(L:b) : c =

-> f hd :: map £ tl

final constraints:

b =Db
b =Db
b =Db
a = a

b =D
a=>b
C=C’
a’=c’
d list

list

’ list
7 list

"7 1ist

y ’
-> a

list

= ¢ list

final solution:

[b' -> c¢'/a]
[b' list/Db]
[c' list/c]

Step 3: Solve Constraints

let rec map (f:a) (l:b) : c =
match 1 with
[] —> []
| hd::tl1l -> £ hd :: map £ tl
final solution:
(b' -> c'/a]
[b' list/b]
[c' list/c]
let rec map (f:b' -> c¢') (l:b' 1list) c' list =
match 1 with
[1 > [] |
| hd::tl -> f hd map £ tl)
\ | 4

[Step 3: Solve Constraints]

let rec map (f:a) (l:b) : c =
match 1 with
[] => []
| hd::tl1l -> £ hd :: map £ tl

renaming type variables:

let rec map (f: "a -> "b) (1l: "a list): 'b list =
match 1 with
[] => []

| hd::tl -> £ hd :: map £ tl [/fﬁ

N\ 7
NP

CONSTRAINT GENERATION

Type Inference Details

Type constraints are sets of equations between type schemes
— q:={s1l1=s12, ..., snl =sn2}

— eg.:{b=b’ list,a=(b->c)}

Constraint Generation

Syntax-directed constraint generation

— our algorithm crawls over abstract syntax of untyped
expressions and generates

e aterm scheme
e aset of constraints

Algorithm defined as set of inference rules:
— GFu=>e:t,q

/ \\\ constraints that must be solved

type (scheme)

context
annotated
unannotated €Xpression
expression in OCaml:
f J \ : J gen : ctxt -> exp -> - | :
: ann_exp * scheme * constraints.
inputs outputs

")‘ |

Constraint Generation

Simple rules:

GkEx==>x:s, {} (ifG(x)=5)

GFn==>n:int, {}

G F true ==> true : bool, { }

Operators

GFul==>el:tl,ql GlFru2==>e2:1t2,92

Grul+u2==>el+e2:int,qlUq2 U {tl =int, t2 =int}

GFul==>el:tl,ql GFu2==>e2:t2,q2

GFul<u2==>el<e2:bool,glUqg2U{tl =int, t2 =int}

If statements

GlFrul==>el:tl, ql
GlFru2==>e2:1t2,92
GFu3==>e3:13,93

G F if ul then u2 else u3 ==> if el then e2 else e3

:t2, qlUq2Uq3U{tl=bool, t2 =t3}

Function Application

GFrul==>el:tl,ql
GFu2==>e2:t2,q2

(for fresh a)

Function Declaration

G x:aku==>e:t,q (for fresh a)
GFfunx->u==>fun(x:a)->e a->t, q
G f:a->b,x:aktu==>e:t,q (for fresh a,b)

GFrecf(x)=u==>recf(x:a):b=e : a->b,qgU{t=b}

Summary: The Type Inference System

GFul==>el:tl, ql GFu2==>e2:t2,q2

Grul+u2==>el+e2:int,qlUqg2U {tl =int, t2 = int}

GFrul==>el:tl,ql
GFru2==>e2:t2,q2
GFu3==>e3:13,93
G F if ul then u2 else u3 ==> if el then e2 else e3
:t2, qlUqg2Uqg3U{tl=bool, t2 =t3}

GFx==>x:s, {}

(if G(x) = s)

GFn==>n:int, {}

GFul==>el:tl, ql

GFru2==>e2:t2,092 (for fresh a)
GFulu2==>ele2 '“: a, qlUqg2U({t1 =-t2 -> a}

G x:aklu==>e:t,q (for fresh a)
GFfunx->u==>fun(x:a) ->em: a->t, mq
G f:a->b,x:aklu==>e:t,q (for fresh a,b)

GFrecf(x)=u==>recf(x:a):b=e : a->b,qU{t=Db}

SOLUTIONS TO CONSTRAINTS

Solutions

A solution to a system of type constraints is a substitution S

— a function from type variables to type schemes
— assume substitutions are defined on all type variables:

 S(a)=a (for almost all variables a)
* S(a)=s (for some type scheme s)

— dom(S) = set of variables s.t. S(a) # a

Solutions

A solution to a system of type constraints is a substitution S

— a function from type variables to type schemes
— assume substitutions are defined on all type variables:

 S(a)=a (for almost all variables a)
* S(a)=s (for some type scheme s)

— dom(S) = set of variables s.t. S(a) # a

We can also apply a substitution S to a full type scheme s.

b->a->b[int/a, int->bool/b]

= (int->bool) -> int -> (int->bool)

Solutions

When is a substitution S a solution to a set of constraints?
Constraints: {s1=s2,s3 =s4,s5=s6, ... }

When the substitution makes both sides of all equations the same.

solution:
constraints: b -> (int -> bool) / a
int -> bool / c
a=b->c b/b
c = int -> bool

constraints with solution applied:

b->(int->bool) = b->(int->bool)
int -> bool = int->bool N

Solutions

When is a substitution S a solution to a set of constraints?
Constraints: {s1=s2,s3 =s4,s5=s6, ... }
When the substitution makes both sides of all equations the same.

A second solution

solution 1:
constraints: b -> (int -> bool) / a
int -> bool / c
a=b->c b /b
c = int -> bool
solution 2:

int -> (int -> bool) / a
int -> bool / c
int/b

Solutions

When is one solution better than another to a set of constraints?

constraints:

a=b->c
c = int -> bool

solution 1:

b->(int->bool) / a
int->bool / c
b/ b

type b -> ¢ with solution applied:

b -> (int -> bool)

solution 2:

int->(int->bool) / a
int->bool / ¢
int / b

type b -> ¢ with solution applied:

int -> (int -> bool)

Solutions

solution 1: solution 2:

b -> (int -> bool) / a int -> (int -> bool) / a

int ->bool / ¢ int -> bool / c

b /b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

Solution 1 is "more general" — there is more flex.
Solution 2 is "more concrete"

We prefer solution 1.

Solutions

solution 1: solution 2:

b -> (int -> bool) / a int -> (int -> bool) / a

int ->bool / ¢ int -> bool / c

b /b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

Solution 1 is "more general" — there is more flex.
Solution 2 is "more concrete"
We prefer the more general (less concrete) solution 1.

Technically, we prefer T to S if there exists another substitution U
and for all typest, S (t) = U (T (t))

Solutions

solution 1: solution 2:

b -> (int -> bool) / a int -> (int -> bool) / a

int ->bool / ¢ int -> bool / c

b /b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

There is always a best solution, which we can a principal solution.
The best solution is (at least as) preferred as any other solution.

Examples

Example 1
— q = {a=int, b=a}
— principal solution S:
* S(a) =S(b) =int
* S(c)=c (forall c other than a,b)

Examples

Example 2
— q = {a=int, b=a, b=bool}
— principal solution S:
* does not exist (there is no solution to q)

UNIFICATION

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)
— Unification systematically simplifies a set of constraints:
 Starting state of unification process: (1,q)
* Final state of unification process: (S, { })

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)
— Unification systematically simplifies a set of constraints:
 Starting state of unification process: (1,q)
* Final state of unification process: (S, { })

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)
— Unification systematically simplifies a set of constraints:
 Starting state of unification process: (1,q)
* Final state of unification process: (S, { })

type ustate = substitution * constraints

unify_step : ustate -> ustate

unify_step (S, {bool=bool} U qg) = (S, q)

unify_step (S, {int=int} Uq) = (S, q)

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)
— Unification systematically simplifies a set of constraints:
 Starting state of unification process: (1,q)
* Final state of unification process: (S, { })

type ustate = substitution * constraints

unify_step : ustate -> ustate

unify_step (S, {bool=bool} U q) = (S, q)

unify_step (S, {int=int} Uq) = (S, q)

unify_step (S, {a=a} Uqg) = (S,q) B

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)
— Unification systematically simplifies a set of constraints:
 Starting state of unification process: (1,q)
* Final state of unification process: (S, { })

type ustate = substitution * constraints

unify_step : ustate -> ustate

unify step (S, {A->B = C->D} U q)

= (S, {A=C, B=D} U q)

Unification

extend substitution S with additional subsitution of s for a

.

unify step (S, {a=s} U q) = ([s/a]oS, [s/alq)

when a is not in FreeVars(s)

“when a is not in FreeVars(s)” is known as the “occurs check”

Occurs Check

a->b
\ a

fun (x:a) -> >¥< x

Recall this program:

It generates the the constraints: a=a->b

Notice that a appears in FreeVars(s)!

There is no solution to these constraints!

Summary: Unification]

(S, {bool=bool}Uqg) --> (S, q)

(S, {int=int}Uq) --> (S, q)

(Sr {a:a} U q) --> (SI q)

(S, {A->B = C>D}Uq) --> (S, {A=C}U{B=D}UQq)

(S, {a=s} U q) -->([s/a]l oS, [s/algq) when ais notin FreeVars(s)

Irreducible States

Recall: unification simplifies equations step-by-step until
* there are no equations left to simplify:

(S, {})

< noconstraints left.
S is the final solution!

Irreducible States

Recall: unification simplifies equations step-by-step until
* there are no equations left to simplify:

(S, {} «<—— noconstraints left.
Sis the final solution!

* or we find basic equations are inconsistent:
* int=bool
* s1->s2 =int
e s1->s2 =bool
* a=s (s contains a)

(or is symmetric to one of the above)

In the latter case, the program does not type check. N

TYPE INFERENCE:
THINGS TO REMEMBER

Type Inference: Things to remember

Declarative algorithm: Given a context G, and untyped term u:

— Find e, t,gsuchthatGFu==>e:t,q
e understand the constraints that need to be generated

— Find substitution S that acts as a solution to g via unification
* if no solution exists, the expression does not type check

— Apply S to e, ie our solution is S(e)

* S(e) contains schematic type variables a,b,c, etc that may be
instantiated with any type

— Since S is principal, S(e) characterizes all reconstructions.

— If desired, use the type checking algorithm to validate

