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Robin Milner:  Turing Award Winner 1991

For three dis+nct and complete achievements:

1. LCF, the mechaniza+on of Sco<'s Logic of Computable 
Func+ons, probably the first theore+cally based yet 
prac+cal tool for machine assisted proof construc+on;

2. ML, the first language to include polymorphic type 
inference together with a type-safe excep+on-
handling mechanism;

3. CCS, a general theory of concurrency.

In addi+on, he formulated and strongly advanced full 
abstrac+on, the study of the rela+onship between 
opera+onal and denota+onal seman+cs.

Robin Milner

We will be studying Hindley-Milner type inference.  
Discovered by Hindley, rediscovered by Milner.   Formalized by Damas.  

Broken several times when effects were added to ML.



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

It’s very convenient we don’t have to annotate f and l with their 
types, as is required by our type checking algorithm.

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl
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strong form of type inference.

ML finds this type for map:

let rec map f l = 
match l with
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map : ('a -> 'b) -> 'a list -> 'b list 



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

ML finds this type for map:

which is really an abbreviation for this type:

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl

map : ('a -> 'b) -> 'a list -> 'b list 

map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list 



Language Design for Type Inference

We call this type the principal type (scheme) for map.

Any other ML-style type you can give map is an instance of this type, 
meaning we can obtain the other types via subs3tu3on of types for 
parameters from the principle type.

E.g.:

('a -> 'a) -> 'a list -> 'a list 

map : ('a -> 'b) -> 'a list -> 'b list 

(bool -> int) -> bool list -> int list 

('a -> int) -> 'a list -> int list 



Language Design for Type Inference
Principal types are great:
• the type inference engine can make a best choice for the type to 

give an expression
• the engine doesn't have to guess (and won't have to guess wrong)

The fact that principal types exist is surprisingly briJle.  If you change 
ML's type system a liJle bit in either direcKon, it can fall apart.



Language Design for Type Inference
Suppose we take out polymorphic types and need a type for id:

Then the compiler might guess that id has one (and only one) of 
these types:

id : bool -> bool

let id x = x

id : int -> int



Language Design for Type Inference
Suppose we take out polymorphic types and need a type for id:

Then the compiler might guess that id has one (and only one) of 
these types:

But later on, one of the following code snippets won't type check:

So whatever choice is made, a different one might have been better.

id true

id : bool -> bool

let id x = x

id : int -> int

id 3



Language Design for Type Inference
We showed that removing types from the language causes a failure 
of principal types.

Does adding more types always make type inference easier?



Language Design for Type Inference
We showed that removing types from the language causes a failure 
of principle types.

Does adding more types always make type inference easier?



Language Design for Type Inference
OCaml has universal types on the outside (“prenex quantification”):

It does not have types like this:

forall 'a,’b. (('a -> 'b) -> 'a list -> 'b list)

(forall 'a.'a -> int)-> int -> bool

argument type has its own polymorphic quantifier



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

no+ce that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int

Does the following type work?

f:  (‘a -> int) -> int * int



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. its argument can have type bool, AND
2. its argument can have type int

Does the following type work?

f:  (‘a -> int) -> int * int

NO:  this says g’s argument can be any type ‘a (it could be int or bool)

Consider g is (fun x -> x + 2) : int -> int.  
Unfortunately,  f g goes wrong when g applied to true inside f.



Language Design for Type Inference
Consider this program again:

We might want to give it this type:

Notice that the universal quantifier appears left of ->

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
System F is a lot like OCaml, except that it allows universal quantifiers 
in any position.  It could type check f.

Unfortunately, type inference in System F is undecidable.

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
System F is a lot like OCaml, except that it allows universal quantifiers 
in any position.  It could type check f.

Unfortunately, type inference in System F is undecideable.

Developed in 1972 by logician Jean Yves-Girard
who was interested in the consistency
of a logic of 2nd-order arithmetic.

Rediscovered as programming language
by John Reynolds in 1974.

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

let f x = x + x
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Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

f : int -> int ? 

let f x = x + x

f : float -> float  ? 

f : 'a -> 'a  ? 



Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

No type in OCaml's type system works.  In Haskell:

f : int -> int ? 

let f x = x + x

f : float -> float  ? 

f : 'a -> 'a  ? 

f : Num 'a => 'a -> 'a  



THE TYPE INFERENCE ALGORITHM
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Type Schemes
A type scheme contains type variables that may be filled in 
during type inference

s ::= a | int | bool | s -> s

A term scheme is a term that contains type schemes rather than 
proper types.  eg, for functions:

fun (x:s) -> e 

let rec f (x:s) : s = e



Two Algorithms for Inferring Types

Algorithm 1:  
• Declarative; generates constraints to be solved later
• Easier to understand
• Easier to prove correct
• Less efficient, not used in practice

Algorithm 2:
• Imperative; solves constraints and updates as-you-go
• Harder to understand
• Harder to prove correct
• More efficient, used in practice
• See:  http://okmij.org/ftp/ML/generalization.html



Algorithm 1
1) Add distinct variables in all places type schemes are needed

26

f e    -- f's argument type must equal e

(a -> b) = c

2) Generate constraints (equations between types) that must be 
satisfied in order for an expression to type check

• Notice the difference between this and the type checking 
algorithm from last time.  Last time, we tried to:
• eagerly deduce the concrete type when checking every expression 
• reject programs when types didn't match. eg:

• This time, we'll collect up equations like:

3) Solve the equaKons, generaKng subsKtuKons of types for 
variables or finding that the equaKons can't be solved



Example:  Inferring types for map

let rec map f l =

match l with
[] -> []

| hd::tl -> f hd :: map f tl



Step 1:  Annotate

let rec map (f:a) (l:b) : c =

match l with
[] -> []

| hd::tl -> 
f hd :: map f tl



Step 2:  Generate Constraints

let rec map (f:a) (l:b) : c =

match l with
[] -> []

| hd ::tl -> 
f hd :: map f tl

b = d list

a = d -> e
...



Step 2:  Generate Constraints

let rec map (f:a) (l:b) : c =

match l with
[] -> []

| hd::tl -> f hd :: map f tl
b = b’ list

b = b’’ list

b = b’’’ list
a = a

b = b’’’ list

a = b’’ -> a’
c = c’ list

a’ = c’

d list = c’ list
d list = c

final constraints:



Step 3:  Solve Constraints

let rec map (f:a) (l:b) : c =

match l with
[] -> []

| hd::tl -> f hd :: map f tl

b = b’ list

b = b’’ list

b = b’’’ list
a = a

b = b’’’ list

a = b’’ -> a’
c = c’ list

a’ = c’

d list = c’ list
d list = c

final constraints:
[b' -> c'/a]
[b' list/b]

[c' list/c]

final solution:



Step 3:  Solve Constraints

let rec map (f:a) (l:b) : c =

match l with
[] -> []

| hd::tl -> f hd :: map f tl

[b' -> c'/a]

[b' list/b]

[c' list/c]

final solution:

let rec map (f:b' -> c') (l:b' list) : c' list =

match l with
[] -> []

| hd::tl -> f hd :: map f tl



Step 3:  Solve Constraints

let rec map (f:a) (l:b) : c =

match l with
[] -> []

| hd::tl -> f hd :: map f tl

let rec map (f: ’a -> ’b) (l: ’a list): ’b list =

match l with
[] -> []

| hd::tl -> f hd :: map f tl

renaming type variables:



CONSTRAINT GENERATION



Type Inference Details
Type constraints are sets of equations between type schemes

– q ::= {s11 = s12, ..., sn1 = sn2} 

– e.g.: {b = b’ list, a = (b -> c)}



Constraint Generation
Syntax-directed constraint generaKon

– our algorithm crawls over abstract syntax of untyped
expressions and generates
• a term scheme
• a set of constraints

Algorithm defined as set of inference rules:
– G Ͱ u => e : t, q

context
annotated
expressionunannotated

expression

type (scheme)

constraints that must be solved

gen : ctxt -> exp -> 
ann_exp * scheme * constraints

in OCaml:

inputs outputs



Constraint GeneraNon
Simple rules:

G Ͱ x ==> x : s,  { }      (if G(x) = s)

G Ͱ n ==> n : int, { }

G Ͱ true ==> true : bool, { }



Operators

G Ͱ u1 ==> e1 : t1, q1             G Ͱ u2 ==> e2 : t2, q2
------------------------------------------------------------------------
G Ͱ u1 + u2 ==> e1 + e2 : int, q1 U q2 U {t1 = int, t2 = int}

G Ͱ u1 ==> e1 : t1, q1             G Ͱ u2 ==> e2 : t2, q2
------------------------------------------------------------------------
G Ͱ u1 < u2 ==> e1 < e2 : bool, q1 U q2 U {t1 = int, t2 = int}



If statements

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2
G Ͱ u3 ==> e3 : t3, q3                    
----------------------------------------------------------------
G Ͱ if u1 then u2 else u3 ==> if e1 then e2 else e3

: t2,     q1 U q2 U q3 U {t1=bool, t2 = t3}



Function Application

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2             (for fresh a)
----------------------------------------------------------------
G Ͱ u1 u2==> e1 e2       :       a,     q1 U q2 U {t1 = t2 -> a}



Function Declaration

G, x : a Ͱ u ==> e : t, q                     (for fresh a)
----------------------------------------------------------------------------------
G Ͱ fun x -> u ==> fun (x : a) -> e    :     a -> t,      q

G, f : a -> b, x : a Ͱ u ==> e : t, q           (for fresh a,b)
-----------------------------------------------------------------------
G Ͱ rec f(x) = u ==> rec f (x : a) : b = e     :     a -> b, q U {t = b}



Summary: The Type Inference System

G, f : a -> b, x : a Ͱ u ==> e : t, q           (for fresh a,b)
-----------------------------------------------------------------------
G Ͱ rec f(x) = u ==> rec f (x : a) : b = e     :     a -> b, q U {t = b}

G, x : a Ͱ u ==> e : t, q                     (for fresh a)
----------------------------------------------------------------------------------
G Ͱ fun x -> u ==> fun (x : a) -> e    :     a -> t,      q

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2             (for fresh a)
----------------------------------------------------------------
G Ͱ u1 u2==> e1 e2       :       a,     q1 U q2 U {t1 = t2 -> a}

G Ͱ u1 ==> e1 : t1, q1
G Ͱ u2 ==> e2 : t2, q2
G Ͱ u3 ==> e3 : t3, q3                    
--------------------------------------------------------------
G Ͱ if u1 then u2 else u3 ==> if e1 then e2 else e3

: t2,     q1 U q2 U q3 U {t1=bool, t2 = t3}

G Ͱ u1 ==> e1 : t1, q1             G Ͱ u2 ==> e2 : t2, q2
------------------------------------------------------------------------
G Ͱ u1 + u2 ==> e1 + e2 : int, q1 U q2 U {t1 = int, t2 = int}

G Ͱ x ==> x : s,  { }      (if G(x) = s)

G Ͱ n ==> n : int, { }



SOLUTIONS TO CONSTRAINTS



Solutions

A solution to a system of type constraints is a substitution S
– a function from type variables to type schemes
– assume substitutions are defined on all type variables:

• S(a) = a     (for almost all variables a)
• S(a) = s      (for some type scheme s)

– dom(S) = set of variables s.t. S(a) ¹ a



Solutions

A solution to a system of type constraints is a substitution S
– a function from type variables to type schemes
– assume substitutions are defined on all type variables:

• S(a) = a     (for almost all variables a)
• S(a) = s      (for some type scheme s)

– dom(S) = set of variables s.t. S(a) ¹ a

We can also apply a substitution S to a full type scheme s.

b -> a -> b [ int/a,   int->bool/b ]  

=  (int->bool) -> int -> (int->bool)



Solutions

When is a subsKtuKon S a soluKon to a set of constraints?

Constraints:  { s1 = s2, s3 = s4, s5 = s6, ... }

When the subsKtuKon makes both sides of all equaKons the same.

a = b -> c
c = int -> bool

b -> (int -> bool) / a
int -> bool / c
b / b 

b -> (int -> bool)      =     b -> (int -> bool)
int -> bool =   int -> bool

constraints:

solution:

constraints with solution applied:



Solutions

When is a subsKtuKon S a soluKon to a set of constraints?

Constraints:  { s1 = s2, s3 = s4, s5 = s6, ... }

When the subsKtuKon makes both sides of all equaKons the same.

A second soluKon

a = b -> c
c = int -> bool

b -> (int -> bool) / a
int -> bool / c
b / b 

constraints:

solution 1:

int -> (int -> bool) / a
int -> bool / c
int / b 

solution 2:



Solutions

When is one soluKon beJer than another to a set of constraints?

a = b -> c
c = int -> bool

b->(int->bool)  /  a
int->bool  /  c
b  /  b 

constraints:

solution 1:
int->(int->bool)  /  a
int->bool  /  c
int /  b 

solution 2:

b -> (int -> bool)

type b -> c with solu+on applied:

int -> (int -> bool)

type b -> c with solu+on applied:



Solutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer solution 1.

solution 1: solution 2:

b -> (int -> bool)

type b -> c with solu+on applied:

int -> (int -> bool)

type b -> c with solu+on applied:

b -> (int -> bool)  /  a
int -> bool  /  c
b  /  b 

int -> (int -> bool) / a
int -> bool / c
int / b 



Solutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer the more general (less concrete) solution 1.
Technically, we prefer T to S if there exists another substitution U 
and for all types t, S (t) = U (T (t))

solution 1: solu+on 2:

b -> (int -> bool)

type b -> c with solu+on applied:

int -> (int -> bool)

type b -> c with solution applied:

b -> (int -> bool)  /  a
int -> bool  /  c
b  /  b 

int -> (int -> bool) / a
int -> bool / c
int / b 



Solutions

There is always a best soluKon, which we can a principal solu3on.
The best soluKon is (at least as) preferred as any other soluKon.

solution 1: solu+on 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

b -> (int -> bool)  /  a
int -> bool  /  c
b  /  b 

int -> (int -> bool) / a
int -> bool / c
int / b 



Examples
Example 1

– q = {a=int, b=a}
– principal soluMon S:

• S(a) = S(b) = int
• S(c) = c    (for all c other than a,b)



Examples
Example 2

– q = {a=int, b=a, b=bool}
– principal solution S:

• does not exist (there is no solution to q)



UNIFICATION



Unification
UnificaKon:  An algorithm that provides the principal soluKon to 
a set of constraints (if one exists)

– UnificaMon systemaMcally simplifies a set of constraints:
• Star+ng state of unifica+on process: (I,q)
• Final state of unifica+on process: (S, { })



Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification:  An algorithm that provides the principal solution to 
a set of constraints (if one exists)

– Unification systematically simplifies a set of constraints:
• Starting state of unification process: (I,q)
• Final state of unification process: (S, { })



Unification

unify_step (S, {bool=bool} U q)   =   (S, q)

unify_step (S, {int=int}      U q)   =   (S, q)

type ustate = subs+tu+on * constraints

unify_step : ustate -> ustate

Unification:  An algorithm that provides the principal solution to 
a set of constraints (if one exists)

– Unification systematically simplifies a set of constraints:
• Starting state of unification process: (I,q)
• Final state of unification process: (S, { })



Unification

unify_step (S, {bool=bool} U q)   =   (S, q)

unify_step (S, {int=int}      U q)   =   (S, q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

unify_step (S, {a=a}          U q)   =   (S, q)

Unification:  An algorithm that provides the principal solution to 
a set of constraints (if one exists)

– Unification systematically simplifies a set of constraints:
• Starting state of unification process: (I,q)
• Final state of unification process: (S, { })



Unification

unify_step (S,    {A -> B    =   C -> D}    U    q) 

=  (S,  {A = C,   B = D}    U   q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification:  An algorithm that provides the principal solution to 
a set of constraints (if one exists)

– Unification systematically simplifies a set of constraints:
• Starting state of unification process: (I,q)
• Final state of unification process: (S, { })



UnificaNon

unify_step (S,    {a=s}    U    q)     =   ([s/a] o S,    [s/a]q)

when a is not in FreeVars(s)

extend substitution S with additional subsitution of s for a

“when a is not in FreeVars(s)”  is known as the “occurs check”



Occurs Check

Recall this program:

It generates the the constraints:  a = a -> b

There is no solu3on to these constraints!

fun (x:a) -> x x 
a

a -> b

Notice that a appears in FreeVars(s)!



Summary: Unification

(S, {bool=bool} U q)   --> (S, q)

(S, {a=a}  U q)  --> (S, q)

(S,   {A->B  =  C->D} U q)   --> (S,  {A = C} U {B = D} U q)

(S,  {a=s}  U  q)  --> ([s/a] o S,   [s/a]q) when a is not in FreeVars(s)

(S, {int=int} U q)   --> (S, q)



Irreducible States

Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { }) no constraints left.
S is the final solution!



Irreducible States

In the laJer case, the program does not type check.

Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

• or we find basic equations are inconsistent:
• int = bool
• s1->s2 = int
• s1->s2 = bool
• a = s              (s contains a)

(or is symmetric to one of the above)

(S, { }) no constraints lec.
S is the final solu+on!



TYPE INFERENCE:
THINGS TO REMEMBER



Type Inference: Things to remember
Declarative algorithm:  Given a context G, and untyped term u:

– Find e, t, q such that G Ͱ u ==> e : t, q
• understand the constraints that need to be generated

– Find substitution S that acts as a solution to q via unification
• if no solution exists, the expression does not type check

– Apply S to e, ie our solution is S(e) 
• S(e) contains schematic type variables a,b,c, etc that may be 

instantiated with any type

– Since S is principal, S(e) characterizes all reconstructions.

– If desired, use the type checking algorithm to validate


