
Reasoning About Modular Programs
Part 1: Representation Invariants

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Efficient Data Structures
In COS 226, you learned about all kinds of clever data structures:
• red-black trees, 2-3 trees
• union-find sets
• tries, ...

Not just any tree is a 2-3 tree. Such tree saBsfy invariants:
• eg: keys are in order in the tree
• eg: all paths from root to leaf have the same length

Efficient Data Structures
What are the invariants for?
• to bound time and space used
• to ensure results are correct

– eg: red-black tree lookup depends upon the in-order invariant

Key Question: How do you arrange for the invariants to be
preserved when client code is using your interface & calling your
functions?

Answer: Use abstract types & representation invariants.

REPRESENTATION INVARIANTS

A Signature for Sets

5

module type SET =
sig
type ‘a set

val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

val add : ‘a -> ‘a set -> ‘a set
val rem : ‘a -> ‘a set -> ‘a set

val size : ‘a set -> int

val union : ‘a set -> ‘a set -> ‘a set

val inter : 'a set -> ‘a set -> 'a set

end

Sets as Lists without Duplicates

6

module Set2 : SET =
struct

type ‘a set = ‘a list

let empty = []

let mem = List.mem

(* add: check if already a member *)

let add x l = if mem x l then l else x::l

(* size: number of unique elements in the set *)
let size l = List.length l

(* union: discard duplicates *)

let union l1 l2 = List.fold_left
(fun a x -> if mem x l2 then a else x::a) l2 l1

end

Back to Sets
The interesting operation:

Why does this work? It depends on an invariant:

All lists supplied as an argument contain no duplicates.

A representation invariant is a property that holds of all values of
a particular (abstract) type.

(* size: number of unique elements in the list *)
let size (l:’a set) : int = List.length l

Implementing Representation Invariants

For lists with no duplicates:

(* checks that a list has no duplicates *)
let rec inv (s : 'a set) : bool =

match s with
[] -> true

| hd::tail -> not (mem hd tail) && inv tail

let rec check (s : ‘a set) (m:string) : ‘a set =
if inv s then
()

else
failwith m

Debugging with RepresentaKon Invariants

(* size: number of unique elements *)
let size (s:’a set) : int =
check s “size: bad set input”;
List.length s

As a precondition on input sets:

(* add x to set s *)
let add x s =
let s = if mem x s then s else x::s in
check s “add: bad set output”;
s

As a postcondition on output sets:

A Signature for Sets

10

module type SET =
sig
type ‘a set

val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

val add : ‘a -> ‘a set -> ‘a set
val rem : ‘a -> ‘a set -> ‘a set

val size : ‘a set -> int

val union : ‘a set -> ‘a set -> ‘a set

val inter : 'a set -> ‘a set -> 'a set

end

Suppose we check all the red values satisfy our invariant leaving the module,
do we have to check the blue values entering the module satisfy our invariant?

Representation Invariants Pictorially

Client Code Abstract Set Data Type

empty

add

[1;2]
type t

[]

type t
[1;2]

size

[1;1;1]
type int list

check

check

assume

When debugging, we can check our invariant each time we construct a value
of abstract type. We then get to assume the invariant on input to the module.
But you may want to double-check it in on entry anyway in case you made
a mistake elsewhere. (In security circles, this is "defense in depth".)

[7;3;5]

[]

Representation Invariants Pictorially

Client Code Abstract Set Data Type

empty

add

[1;2]
type t

[]

type t
[1;2]

size

[1;1;1]
type int list

assume

When proving, we prove our invariant holds each time we construct a value
of abstract type and release it to the client. We get to assume the invariant
holds on input to the module.

Such a proof technique is highly modular: Independent of the client!

[7;3;5]

[]

RepeaKng myself

You may

assume the invariant inv(i) for module inputs i with abstract type

provided you

prove the invariant inv(o) for all module outputs o with abstract type

Design with Representation Invariants
A key to writing correct code is understanding your own
invariants very precisely

Write down key representation invariants
– if you write them down then you can be sure you know what

they are yourself!
– you may find as you write them down that they were a little

fuzzier than you had thought
– easier to check, even informally, that each function and value

you write satisfies the invariants once you have written them
– great documentation for others
– great debugging tool if you implement your invariant
– you’ll need them to prove to yourself that your code is correct

Summary for Representation Invariants
The signature of the module tells you what to prove

Roughly speaking:
– assume invariant holds on values with abstract type on the way in
– prove invariant holds on values with abstract type on the way out

