Reasoning About Modular Programs
Part 1: Representation Invariants

Speaker: David Walker
COS 326 s

Princeton University

slides copyright 2020 David Walker and Andrel Appel
permission granted to reuse these slides for non-commercial educational purposes

Efficient Data Structures

In COS 226, you learned about all kinds of clever data structures:
* red-black trees, 2-3 trees

* union-find sets

* tries, ...

Not just any tree is a 2-3 tree. Such tree satisfy invariants:
 eg: keys are in order in the tree
e eg: all paths from root to leaf have the same length

Efficient Data Structures

What are the invariants for?
* to bound time and space used

* to ensure results are correct
— eg: red-black tree lookup depends upon the in-order invariant

Key Question: How do you arrange for the invariants to be
preserved when client code is using your interface & calling your
functions?

Answer: Use abstract types & representation invariants.

REPRESENTATION INVARIANTS

A Signature for Sets

module type SET =
sig
type ‘a set

val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

val add : ‘a -> ‘a set -> ‘a set

val rem : ‘a -> ‘a set -> ‘a set

val size : ‘a set -> int

val union : ‘a set -> ‘a set -> ‘a set
val inter : 'a set -> ‘a set -> 'a set

end

[Sets as Lists without Duplicates

module Set?2 : SET =
struct

type ‘a set = ‘a list

let empty = []
let mem = List.mem
(* add: check 1f already a member *)

let add x 1 = 1if mem x 1 then 1 else x::1

(* size: number of unique elements in the set *)
let size 1 = List.length 1

(* union: discard duplicates ¥*)
let union 11 12 = List.fold left

(fun a x -> 1f mem x 12 then a else x::a) 12 11

end

O\
o\

L)
U

Back to Sets

The interesting operation:

(* size: number of unique elements in the list ¥*)
let size (l:’a set) : 1nt = List.length 1

Why does this work? It depends on an invariant:

All lists supplied as an argument contain no duplicates.

A representation invariant is a property that holds of all values of
a particular (abstract) type.

Implementing Representation Invariants

For lists with no duplicates:

(* checks that a list has no duplicates ¥*)
let rec inv (s : 'a set) : bool =
match s with
[] —> true
| hd::tail -> not (mem hd tail) && inv tail

let rec check (s : ‘a set) (m:string) : ‘a set =
1f inv s then
()
else
failwith m

Debugging with Representation Invariants

As a precondition on input sets:

(* size: number of unique elements *)
let size (s:’a set) : int =
check s Y“size: Dbad set input”;
List.length s

As a postcondition on output sets:

(* add x to set s ¥*)

let add x s =
let s = 1f mem x s then s else x::s 1n
check s “add: bad set output”;
S

A Signature for Sets

module type SET =
sig
type ‘a set

val empty : ‘a set

val mem : ‘a -> ‘a set -> bool

val add : ‘a -> ‘a set -> ‘a set

val rem : ‘a -> ‘a set -> ‘a set

val size : ‘a set -> int

val union : ‘a set -> ‘a set -> ‘a set

val inter : 'a set -> ‘a set -> 'a set
end

Suppose we check all the red values satisfy our invariant leaving the module,
do we have to check the blue values entering the module satisfy our invariﬁm’ ?

Representation Invariants Pictorially

Abstract Set Data Type

check
 |empPly [1;2]

add
[]

Client Code

size
assume [7:3:5]

type int list /e/
[1;1;1]

When debugging, we can check our invariant each time we construct a value
of abstract type. We then get to assume the invariant on input to the module.

But you may want to double-check it in on entry anyway in case you made |
a mistake elsewhere. (In security circles, this is "defense in depth".)

Representation Invariants Pictorially

Client Code Abstract Set Data Type

add
[]
assume | Size

type int list
[1;1;1]

[7;3,5]

When proving, we prove our invariant holds each time we construct a value
of abstract type and release it to the client. We get to assume the invariant

holds on input to the module.

Such a proof technique is highly modular: Independent of the client!

Repeating myself

You may
assume the invariant inv(i) for module inputs i with abstract type
provided you

prove the invariant inv(o) for all module outputs o with abstract type

Design with Representation Invariants

A key to writing correct code is understanding your own
invariants very precisely

Write down key representation invariants

— if you write them down then you can be sure you know what
they are yourself!

— you may find as you write them down that they were a little
fuzzier than you had thought

— easier to check, even informally, that each function and value
you write satisfies the invariants once you have written them

— great documentation for others

— great debugging tool if you implement your invariant
— you’ll need them to prove to yourself that your code is correct

Summary for Representation Invariants

The signature of the module tells you what to prove

Roughly speaking:
— assume invariant holds on values with abstract type on the way in
— prove invariant holds on values with abstract type on the way out

