
OCaml Modules
Part 4: Module Evaluation

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Last Time --> This Time

We know how to define modules and functors.
How do we execute them?

module IntRing =
struct
type t = int
let zero = 0
let one = 1
let add x y= x + y
let mul x y = x * y

end

module FloatRing =
struct
type t = float
let zero = 0.0
let one = 1.0
let add = (+.)
let mul = (*.)

end

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =

struct
type elt = ...

type matrix = ...
let matrix_of_list = ...
let add m1 m2 = ...
let mul m1 m2 = ...

end

Evaluating the contents of a module
A structure is a series of declarations:

– How does one evaluate a type declaration? We’ll ignore it
(because it doesn’t do anything at run time).

– How does one evaluate a let declaration?

– Remember, this kind of let:
– Is the same as:
– The right-hand side is already a value (fun x -> e) so evaluation is

immediately "done"

How does one evaluate an entire structure?
– evaluate each declaration in order from first to last

let x = e
evaluate the expression e
bind the value to x

let f x = e

let f = fun x -> e

Evaluating the contents of a module

let x = 326

let main () =
Printf.printf “Hello COS %d\n” x

let foo =
Printf.printf “Byeee!\n”

let _ =
main ()

main.ml

Evaluating the contents of a module

main.ml

Step 1:
evaluate the 1st declaraMon

but the RHS (326)
is already a value so there’s
nothing to do except
remember that x is bound
to the integer 326

let x = 326

let main () =
PrinQ.prinQ “Hello COS %d\n” x

let foo =
PrinQ.prinQ “Byeee!\n”

let _ =
main ()

Evaluating the contents of a module

main.ml
Step 2:
evaluate the 2nd declaration
this is slightly trickier:

let main () = ...

really declares a function.
It’s equivalent to:

let main = fun () -> ...

“fun () -> ...” is already
a value, like 326.
So there’s nothing to do again.

let x = 326

let main () =
Printf.printf “Hello COS %d\n” x

let foo =
Printf.printf “Byeee!\n”

let _ =
main ()

Evaluating the contents of a module

main.ml
Step 3:
evaluate the 3rd declaraMon

let foo = ...

evaluaMon of this expression
has an effect – it prints
out “Byeee!\n” to the
terminal.

the resulMng value is ()
which is bound to foo

let x = 326

let main () =
PrinQ.prinQ “Hello COS %d\n” x

let foo =
PrinQ.prinQ “Byeee!\n”

let _ =
main ()

Evaluating the contents of a module

main.ml
Step 4:
evaluate the 4th declaration

let _ = ...

evaluation main ()
causes another effect.

“Hello ...” is printed

the resulting value is () again.
the “_” indicates we don’t
care to bind () to any variable

let x = 326

let main () =
Printf.printf “Hello COS %d\n” x

let foo =
Printf.printf “Byeee!\n”

let _ =
main ()

A Variation

main.ml

This evaluates exactly
the same way

We just replaced

let main () = ...

with the equivalent

let main = fun () -> ...

let x = 326

let main =
(fun () ->

PrinQ.prinQ “Hello COS %d\n” x)

let foo =
PrinQ.prinQ “Byeee!\n”

let _ =
main ()

A Variation

main.ml
This rewrite does
something different.

On the 2nd step, it prints
because that’s what evaluating
this expression does:

Printf.printf “Hello COS %d\n” x;
(fun () -> ())

The result of the expression is:

fun () -> ()

which is bound to main.
This is a pretty silly function.

let x = 326

let main =
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo =
Printf.printf “Byeee!\n”

let _ =
main ()

A Variation
main.ml

module C326 =
struct
let x = 326

let main =
PrinQ.prinQ “Hello COS %d\n” x;
(fun () -> ())

let foo = PrinQ.prinQ “Byeee!\n”

let _ = main ()
end

let _ =
PrinQ.prinQ "Done\n"

Now what happens?

A Variation
main.ml

module C326 =
struct
let x = 326

let main =
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ = main ()
end

let done =
Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in
order.

A Variation
main.ml

module C326 =
struct
let x = 326

let main =
PrinQ.prinQ “Hello COS %d\n” x;
(fun () -> ())

let foo = PrinQ.prinQ “Byeee!\n”

let _ = main ()
end

let done =
PrinQ.prinQ "Done\n"

Now what happens?

The enMre file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in
order.

ExecuMng the module declaraMon
has the effect of execuMng
every declaraMon within it
in order.

ExecuMng let done = ...
is as before

A Variation
main.ml

module C326 =
struct
exception Unimplemented
let x = raise Unimplemented

let main =
Printf.printf “Hello COS %d\n” x;
(fun () -> ())

let foo = Printf.printf “Byeee!\n”

let _ = main ()
end

let done =
Printf.printf "Done\n"

Now what happens?

A Variation
main.ml

module C326 =
struct
excepMon Unimplemented
let x = raise Unimplemented

let main =
PrinQ.prinQ “Hello COS %d\n” x;
(fun () -> ())

let foo = PrinQ.prinQ “Byeee!\n”

let _ = main ()
end

let done =
PrinQ.prinQ "Done\n"

Now what happens?

The enMre file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in
order.

ExecuMng the module declaraMon
has the effect of execuMng
every declaraMon within it
in order.

The first declaraMon within
it raises an excepMon which is
not caught! That is the only
result.

A Variation
main.ml

module type S =
sig
type t = int
val x : t

end

module F (M:S) : S =
struct
let wow = Printf.printf “%d\n” M.x
let t = M.t
let x = M.x

end

let done = Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module type = ...
• module F (M:S) : S = ...
• let done = ...

A Variation
main.ml

module type S =
sig
type t = int
val x : t

end

module F (M:S) : S =
struct
let wow = PrinQ.prinQ “%d\n” M.x
let t = M.t
let x = M.x

end

let done = PrinQ.prinQ "Done\n"

The signature declaraMon has no
(run-Mme) effect.

The functor declaraMon is
like declaring a funcMon value.

The body of the functor is not
executed unMl it is applied.

The functor is not applied here
so M.x is not printed.

Only “Done\n” is printed.

A Variation
main.ml
module type S = sig ... end

module F (M:S) : S =
struct
let wow = Printf.printf “%d\n” M.x
let t = M.t
let x = M.x

end

let module M1 = F (
struct

type t = int
val x = 3

end)

let done = Printf.printf "Done\n"

What happens now?

A Variation
main.ml
module type S = sig ... end

module F (M:S) : S =
struct
let wow = PrinQ.prinQ “%d\n” M.x
let t = M.t
let x = M.x

end

let module M1 = F (
struct

type t = int
val x = 3

end)

let done = PrinQ.prinQ "Done\n"

What happens now?

When M1 is declared,
F is applied to an argument.

This creates a new structure and
its components are executed.

This has the effect of prinMng 3.

SUMMARY

Summary

21

Functors allow code reuse
– commonly used to implement collection data structures

• eg: sets, graphs, hash tables, etc)
• the module parameter includes operations required to implement a

collection of objects
• eg: equality or inequality or hashing

It is important to understand module evaluation semantics
– evaluate every declaration in order
– functions are values

• a function has no effect until applied to an argument
– functors are module values!

• a functor has no effect until applied to a module argument

