
OCaml Modules
Part 1: Simple Structures

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

The Reality of Development

2

We rarely know the right algorithms or the right data structures
when we start a design project.

– When implementing a search engine, what data structures and
algorithms should you use to build the index? To build the query
evaluator?

Reality is that we often have to go back and change our code,
once we’ve built a prototype.

– Often, we don’t even know what the user wants (requirements)
until they see a prototype.

– Often, we don’t know where the performance problems are
until we can run the software on realistic test cases.

– Sometimes we just want to change the design -- come up with
simpler algorithms, architecture later in the design process

Engineering for Change

3

Given that we know the software will change, how can we write
the code so that doing the changes will be easier?

The primary trick: use data and algorithm abstraction.
– Don’t code in terms of concrete representations that the

language provides.
– Do code with high-level abstractions in mind that fit the

problem domain.
– Implement the abstractions using a well-defined interface.
– Swap in different implementations for the abstractions.
– Parallelize the development process.

Example

4

Goal: Implement a query engine.
Requirements: Need a scalable dictionary (a.k.a. index)

– maps words to set of URLs for the pages on which words appear.
– want the index so that we can efficiently satisfy queries

• e.g., all links to pages that contain “Dave” and “Jill”.

Wrong way to think about this:
– Aha! A list of pairs of a word and a list of URLs.
– We can look up “Dave” and “Jill” in the list to get back a list of

URLs.

Example

5

type query =
Word of string

| And of query * query
| Or of query * query

type index = (string * (url list)) list

let rec eval(q:query)(h:index) : url list =

match q with
| Word x ->

let (_,urls) = List.find (fun (w,urls) -> w = x) h in
urls

| And (q1,q2) ->

merge_lists (eval q1 h) (eval q2 h)

| Or (q1,q2) ->
(eval q1 h) @ (eval q2 h)

merge expects to
be passed sorted

lists.

Oops!

Concrete data
structure chosen

as index
representa8on

Example

6

type query =
Word of string

| And of query * query
| Or of query * query

type index = string (url list) hashtable

let rec eval(q:query)(h:index) : url list =

match q with
| Word x ->

let i = hash_string x in
let l = Array.get h [i] in
let urls = assoc_list_find l x in
urls

| And (q1,q2) -> ...

| Or (q1,q2) -> ...

I find out there’s
a better data

structure to use

A Better Way

7

type query =
Word of string

| And of query * query
| Or of query * query

type index = (string, Url.t Set.t) Dict.t

let rec eval(q:query)(d:index) : Url.t Set.t

match q with
| Word x -> Dict.lookup d x

| And (q1,q2) -> Set.intersect (eval q1 h) (eval q2 h)

| Or (q1,q2) -> Set.union (eval q1 h) (eval q2 h)

The problem domain
talked about an
abstract type of

dic$onaries and sets of
URLs.Once we’ve written the

client, we know what
operations we need on

these abstract types.

So we can define an
interface, and send a pal

off to implement the
abstract types dictionary

and set.

Later on, when we find
out linked lists aren’t so

good for sets, we can
replace them with

balanced trees.

Abstract Data Types

Barbara Liskov
Assistant Professor, MIT

1973

Invented CLU language
that enforced data abstraction

Barbara Liskov
Professor, MIT

Turing Award 2008

“For contribuMons to pracMcal and theoreMcal
foundaMons of programming language and

system design, especially related to
data abstracMon, fault tolerance,

and distributed compuMng.”

ADTS IN OCAML

Building Abstract Types in OCaml

10

OCaml has mechanisms for building new abstract data types:
– signature: an interface.

• specifies the abstract type(s) without specifying their
implementation

• specifies the set of operations on the abstract types
– structure: an implementation.

• a collection of type and value definitions
• notion of an implementation matching or satisfying an interface

– gives rise to a notion of subtyping
– functor: a parameterized module

• really, a function from modules to modules
• allows us to factor out and re-use modules

The Abstraction Barrier

11

Rule of thumb: Use the language to enforce the abstracRon barrier.
– Reveal liTle informaMon about how something is implemented
– Provide maximum flexibility for change moving forward.
– Murphy’s Law: What is not enforced, will be broken

But rules are meant to broken: Exercise judgement.
– may want to reveal more informaMon for debugging purposes

• eg: conversion to string so you can print things out

ML gives you precise control over how much of the type is leV abstract
– different amounts of informaMon can be revealed in different contexts
– type checker helps you detect violaMons of the abstracMon barrier

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () = ... sort_by_studio ...

let _ = main ()

main.ml

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () = ... sort_by_studio ...

let _ = main ()

main.ml

Each .ml file actually defines an ML module.

Convention: the file foo.ml or Foo.ml defines the module named Foo.

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () = ... sort_by_studio ...

let _ = main ()

main.ml

open gives
direct access to
module components

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () =
... Query.sort_by_studio ...

main.ml

Can refer to module
components using dot notation

redacted

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

open Io
open Query

let main () =
... Query.sort_by_studio ...

main.ml

type movie

val sort_by_studio : movie list -> movie list
val sort_by_year : movie list -> movie list

query.mli

You can add interface files (.mli)
(also called signatures in ML)

These interfaces can hide
module components
or render types abstract.

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

open Io
open Query

let main () =
... Query.sort_by_studio ...

main.ml

type movie

val sort_by_studio : movie list -> movie list
val sort_by_year : movie list -> movie list

query.mli

If you have no signature file,
then the default signature
is used: all components
are fully visible to clients.

Simple Modules
Simple summary:

– file Name.ml is a structure implementing a module named Name
– file Name.mli is a signature for the module named Name

• if there is no file Name.mli, OCaml infers the default signature

Name.mli Name.ml ClientA.ml

...
Name.x
...

ClientB.ml

...
open Name
... x ...

Signature Structure

“module”

At first glance: OCaml modules = C modules?
C has:

– .h files (signatures) similar to .mli files?
– .c files (structures) similar to .ml files?

But ML also has:
– Rghter control over type abstracRon

• define abstract, transparent or translucent types in signatures
– i.e.: give none, all or some of the type informaMon to clients

– more structure
• modules can be defined within modules
• i.e.: signatures and structures can be defined inside files

– more reuse
• mulMple modules can saMsfy the same interface
• the same module can saMsfy mulMple interfaces
• modules take other modules as arguments (functors)

– fancy features: dynamic, first class modules

Signature Definitions Inside Files

20

module type INT_STACK =

sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack

val is_empty : stack -> bool

val pop : stack -> stack
val top : stack -> int option

end

Signature Definitions Inside Files

21

module type INT_STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack
val is_empty : stack -> bool
val pop : stack -> stack option
val top : stack -> int option

end

empty and push
are abstract

constructors:
functions that build
our abstract type.

Signature DefiniNons Inside Files

22

module type INT_STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack

val is_empty : stack -> bool

val pop : stack -> stack
val top : stack -> int option

end
is_empty is an

observer – useful
for determining

properties of the
ADT.

Signature Definitions Inside Files

module type INT_STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack

val is_empty : stack -> bool

val pop : stack -> stack
val top : stack -> int option

end

23

pop is sometimes
called a mutator

(though it doesn’t
really change the

input)

Signature DefiniNons Inside Files

24

module type INT_STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack

val is_empty : stack -> bool

val pop : stack -> stack
val top : stack -> int option

end
top is also an

observer, in this
functional setting

since it doesn’t
change the stack.

Put comments in your signature!

25

module type INT_STACK =
sig

type stack

(* create an empty stack *)
val empty : unit -> stack

(* push an element on the top of the stack *)
val push : int -> stack -> stack

(* returns true iff the stack is empty *)
val is_empty : stack -> bool

(* pops top element off the stack;
returns empty stack if the stack is empty *)

val pop : stack -> stack

(* returns the top element of the stack; returns
None if the stack is empty *)

val top : stack -> int option
end

Signature Comments
Signature comments are for clients of the module

– explain what each funcRon should do
• how it manipulates abstract values (stacks)

– not how it manipulates concrete values
– don’t reveal implementaRon details that should be hidden

behind the abstracRon

Don’t copy signature comments into your structures
– your comments will get out of date in one place or the other
– an extension of the general rule: don’t copy code

Place implementaRon comments inside your structure
– comments about implementaRon invariants hidden from client
– comments about helper funcRons

Example Structure Inside a File

28

module ListIntStack : INT_STACK =
struct
type stack = int list
let empty () : stack = []
let push (i:int) (s:stack) : stack = i::s
let is_empty (s:stack) =
match s with
| [] -> true
| _::_ -> false

let pop (s:stack) : stack =
match s with
| [] -> []
| _::t -> t

let top (s:stack) : int option =
match s with
| [] -> None
| h::_ -> Some h

end

module ListIntStack : INT_STACK =
struct
type stack = int list
let empty () : stack = []
let push (i:int) (s:stack) = i::s
let is_empty (s:stack) =
match s with
| [] -> true
| _::_ -> false

let pop (s:stack) : stack =
match s with
| [] -> []
| _::t -> t

let top (s:stack) : int option =
match s with
| [] -> None
| h::_ -> Some h

end

Example Structure Inside a File

29

Inside the module,
we know the

concrete type used
to implement the

abstract type.

module ListIntStack : INT_STACK =
struct
type stack = int list
let empty () : stack = []
let push (i:int) (s:stack) = i::s
let is_empty (s:stack) =
match s with
| [] -> true
| _::_ -> false

let pop (s:stack) : stack =
match s with
| [] -> []
| _::t -> t

let top (s:stack) : int option =
match s with
| [] -> None
| h::_ -> Some h

end

Example Structure Inside a File

30

But by giving the
module the INT_STACK
interface, which does
not reveal how stacks

are being represented,
we prevent code

outside the module
from knowing stacks

are lists.

An Example Client

31

module ListIntStack : INT_STACK =
struct
…

end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0

let s2 = ListIntStack.push 4 s1

let x = ListIntStack.top s2

An Example Client

32

module ListIntStack : INT_STACK =
struct
…

end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0

let s2 = ListIntStack.push 4 s1

let x = ListIntStack.top s2

s0 : ListIntStack.stack
s1 : ListIntStack.stack
s2 : ListIntStack.stack

An Example Client

33

module type INT_STACK =
sig
type stack
val push : int -> stack -> stack

…
end

module ListIntStack : INT_STACK

let s0 = ListIntStack.empty ()

let s1 = ListIntStack.push 3 s0

let s2 = ListIntStack.push 4 s1
let _ = List.rev s2
Error: This expression has type stack but an
expression was expected of type ‘a list.

No8ce that the
client is not

allowed to know
that the stack is a

list.

Example Structure

34

module ListIntStack (* : INT_STACK *) =
struct

type stack = int list
let empty () : stack = []
let push (i:int) (s:stack) = i::s
let is_empty (s:stack) =

match s with
| [] -> true

| _::_ -> false
exception EmptyStack
let pop (s:stack) =

match s with
| [] -> []
| _::t -> t

let top (s:stack) =
match s with
| [] -> None
| h::_ -> Some h

end

The Client without the Signature

35

module ListIntStack (* : INT_STACK *) =
struct
…

end

let s = ListIntStack.empty()
let s1 = ListIntStack.push 3 s

let s2 = ListIntStack.push 4 s1

…

let x = List.rev s2
x : int list = [3; 4]

If we don’t seal
the module with
a signature, the
client can know
that stacks are

lists.

Example Structure

36

module type INT_STACK =
sig

type stack
...

val inspect : stack -> int list

val run_unit_tests : unit -> unit

end

module ListIntStack : INT_STACK =

struct
type stack = int list

...

let inspect (s:stack) : int list = s
let run_unit_tests () : unit = ...

end

Another technique:

Add testing components to
your signature.

Or have 2 signatures, one
for testing and one for the

rest of the code)

Summary

37

ML modules support development of abstract data types
– client programs help define the operations needed

• it is often useful to write them first
– signatures (ie, interfaces, .mli files) specify:

• abstract types
• names of operations and their types
• names of abstract values

– structures (ie, implementations, .ml files) provide:
• the concrete implementation types
• the function implementations
• the values to implement signatures

– when a signature is omitted, OCaml assumes the default signature,
which allows clients to see all implementation details
• over time, clients are going to depend upon details you don't want them

to, making it hard to change ADT implementations

