OCaml Modules

Part 1: Simple Structures

Speaker: David Walker
COS 326 O
Princeton University

&

C 19))
slides copyright 2020 David Walker and Andrel Appel
permission granted to reuse these slides for non-commercial educational purposes



The Reality of Development

We rarely know the right algorithms or the right data structures
when we start a design project.

— When implementing a search engine, what data structures and
algorithms should you use to build the index? To build the query
evaluator?

Reality is that we often have to go back and change our code,
once we’ve built a prototype.

— Often, we don’t even know what the user wants (requirements)
until they see a prototype.

— Often, we don’t know where the performance problems are
until we can run the software on realistic test cases.

— Sometimes we just want to change the design -- come up with
simpler algorithms, architecture later in the design process

2



Engineering for Change

Given that we know the software will change, how can we write
the code so that doing the changes will be easier?

The primary trick: use data and algorithm abstraction.

— Don’t code in terms of concrete representations that the
language provides.

— Do code with high-level abstractions in mind that fit the
problem domain.

— Implement the abstractions using a well-defined interface.
— Swap in different implementations for the abstractions.
— Parallelize the development process.



Example

Goal: Implement a query engine.

Requirements: Need a scalable dictionary (a.k.a. index)
— maps words to set of URLs for the pages on which words appear.

— want the index so that we can efficiently satisfy queries
e e.g., all links to pages that contain “Dave” and “Jill”.

Wrong way to think about this:

— Aha!l A list of pairs of a word and a /ist of URLs.

— We can look up “Dave” and “Jill” in the /ist to get back a /ist of
URLs.



Example

Concrete data
structure chosen
as index
representation

type query =

Word of string
| And of query * query
| Or of query * query

type index = (string * (url 1list)) 1list

let rec eval (g:query) (h:index)
match g with
| Word x —>
let ( ,urls) = List.find
urls
| And (gl,g2) ->
merge lists

| Or (qqu2) —> 7
(eval gl h) @ (eval g2 h)

merge expects to
be passed sorted
lists.

(eval gl h)

in




Example

/ | find out there’s

a better data
structure to use

type query =
Word of string

| And of query * query
| Or of query * query

type index = string (url 1list) hashtable

let rec eval(g:query) (h:index) : url list =
match g with
| Word x —>
let 1 = hash string x in
let 1 = Array.get h [1] in
let urls = assoc list find 1 x in
urls
| And (gl,g2) ->
| Or (gl,q2) ->




A Better Way

The problem domain ]

talked about an
abstract type of
dictionor*

type query =
Word of string

| And of query * query
Once we’ve written the

client, we know what
operations we need on
these abstract types./

| Or of query * query

type index = (string, Url.t Set.t) Dict.t
let rec eval(g:query) (d:index) : Url.t Set.t
match g with
| Word x —-> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) —-> Set.union (eval gl h) (eval g2 h)

So we can define an
interface, and send a pal
good for sets, we can off to implement the

replace the;n with abstract types dictionary / {

balanced trees. and Sey

Later on, when we find
out linked lists aren’t so




Abstract Data Types ]

Barbara Liskov
Professor, MIT
Turing Award 2008

Barbara Liskov
Assistant Professor, MIT
1973

“For contributions to practical and theoretical
foundations of programming language and
system design, especially related to |
data abstraction, fault tolerance, [/ ;'ﬁ;;,j‘\\*,'-;,

N\

and distributed computing.” 7,

Invented CLU language
that enforced data abstraction



ADTS IN OCAML



Building Abstract Types in OCaml

OCaml has mechanisms for building new abstract data types:

— signature: an interface.

» specifies the abstract type(s) without specifying their
implementation

» specifies the set of operations on the abstract types
— structure: an implementation.
* a collection of type and value definitions
* notion of an implementation matching or satisfying an interface
— gives rise to a notion of subtyping
— functor: a parameterized module
* really, a function from modules to modules
* allows us to factor out and re-use modules

N



The Abstraction Barrier

Rule of thumb: Use the language to enforce the abstraction barrier.
— Reveal little information about how something is implemented
— Provide maximum flexibility for change moving forward.
— Murphy’s Law: What is not enforced, will be broken

But rules are meant to broken: Exercise judgement.

— may want to reveal more information for debugging purposes
* eg: conversion to string so you can print things out

IMIL gives you precise control over how much of the type is left abstract
— different amounts of information can be revealed in different contexts
— type checker helps you detect violations of the abstraction barrier



Simple Modules

Recall assigment #2:

query.ml

type movie ={ ... }

let sort_by year = ...

let sort_by studio =...

main.ml

4

open lo
open Query

let main () = ... sort_by_studio ...

let = main ()

4




Simple Modules

Recall assigment #2:

query.ml main.ml
open lo
type movie ={ ... } open Query
let sort_by studio =... let main () = ... sort_by_studio ...
let sort_by year = ...
let = main ()

4 4

Each .ml file actually defines an ML module.

Convention: the file foo.ml or Foo.ml defines the module named Foo. | | 7))




Simple Modules

open gives
direct access to
module components

Recall assigment #2:

query.ml main.ml /
open lo ///
type movie ={ ... } open Query
let sort_by_studio =... let main () = ... sort_by_studio ...
let sort_by year = ...
let = main ()

4 y




Simple Modules

Recall assigment #2:

query.ml

type movie =1{ ... }

let sort_by studio
let sort_by year =

redacted

main.ml

y

open lo K//
epen-Query

let main () =
... Query.sort_by_studio ...

\

4

Can refer to module

components using dot notatio



Simple Modules

query.ml main.m|

type movie ={...} S

o oy s - et
_by_year=... ... Query.sort_by_studio ...

y y

query.mili

You can add interface files (.mli)

type movie (also called signatures in ML)

val sort_by_studio : movie list -> movie list
val sort_by_year : movie list -> movie list

These interfaces can hide
module components
7 or render types abstract.




Simple Modules

query.ml main.ml
type movie ={ ... } open lo

let sort_by studio =...

I in()=
let sort_by year = ... ATMETAN,

... Query.sort_by_studio ...

y y

query.mili
If you have no signature file,
type movie then the default signature
is used: all components
val sort_by_studio : movie list -> movie list are fully visible to clients.
val sort_by_year : movie list -> movie list

7 L




[ Simple Modules

Simple summary:

— file Name.ml is a structure implementing a module named Name

— file Name.mli is a signature for the module named Name

 if there is no file Name.mli, OCaml infers the default signature

Signature Structure

Name.x

Name.mli Name.ml ClientA.ml

“module”

open Name
D

ClientB.ml



At first glance: OCaml modules = C modules?

C has:

— .h files (signatures) similar to .mli files?
— .cfiles (structures) similar to .ml files?

But ML also has:

— tighter control over type abstraction

» define abstract, transparent or translucent types in signatures

— i.e.: give none, all or some of the type information to clients

— more structure

* modules can be defined within modules

* i.e.: signatures and structures can be defined inside files
— more reuse

* multiple modules can satisfy the same interface

* the same module can satisfy multiple interfaces

* modules take other modules as arguments (functors)

— fancy features: dynamic, first class modules



Signature Definitions Inside Files

module type INT STACK =

sig

type stack

val empty : unit -> stack

val push : int -> stack -> stack

val 1s empty : stack -> bool

val pop : stack -> stack

val top : stack -> 1nt option
end




Signature Definitions Inside Files

empty and push

are abstract
constructors:
functions that build
our abstract type.

module type INT STACK =

sig

type stack

val empty : unit -> stack

val push : int -> stack -> stack
val 1s empty : stack -> bool

val pop : stack -> stack option
val top : stack -> int option

end




Signature Definitions Inside Files

module type INT STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack
val 1s empty : stack -> bool
-> stack

val pop : sta

val top : stack -

is_empty is an
observer — useful
for determining
properties of the
ADT.

end




Signature Definitions Inside Files

module type INT STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack
val 1s empty : stack -> bool
val pop : stack -> stack

val top tack -> 1nt option

end

pop is sometimes
called a mutator
(though it doesn’t
really change the
input)




Signature Definitions Inside Files

module type INT STACK =

sig

type stack

val empty unit -> stack

val push int -> stack -> stack

val 1s empty stack -> bool

val pop stack -> stack

val top stack -> int option
end

top is also an
observer, in this
functional setting
since it doesn’t
change the stack.




Put comments in your signature!

module type INT STACK =
sig
type stack

(* create an empty stack *)
val empty : unit -> stack

(* push an element on the top of the stack *)
val push : int -> stack -> stack

(* returns true 1ff the stack is empty *)
val is empty : stack -> bool

(* pops top element off the stack;
returns empty stack 1f the stack 1is empty *)

val pop : stack -> stack

(* returns the top element of the stack; returns
None 1f the stack 1s empty *)

val top : stack -> 1nt option
end




Signature Comments

Signature comments are for clients of the module

— explain what each function should do
* how it manipulates abstract values (stacks)

— not how it manipulates concrete values

— don’t reveal implementation details that should be hidden
behind the abstraction

Don’t copy signature comments into your structures
— your comments will get out of date in one place or the other
— an extension of the general rule: don’t copy code

Place implementation comments inside your structure

— comments about implementation invariants hidden from client

— comments about helper functions |



®@O@® & TheTor x | M Inbox(- x | [ Princett x | § People: X | @ People’ x | F§] Google x | [ cOs3: x | [} Comm x | § cosa

& C & https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

it Apps M Gmail ff GCal G Google EAh Zimbra @ DPW TOPLAS W COS [E5 Imports EJ Guitar E3 poplt5 [E5F Princeton [EF courses

L

Previous Up Next Module List

module List: sig .. end
List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a
non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a
problem with very long lists. When the function takes several list arguments, an approximate formula giving
stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.

val length : 'a list -> int
Return the length (number of elements) of the given list.

val compare_ lengths : 'a list -> 'b list -> int
Compare the lengths of two lists. compare lengths 11 12 is equivalent to

compare (length 11) (length 12),except that the computation stops after itering on the shortest list.
Since 4.05.0

val compare_length_with : 'a list -> int -> int
Compare the length of a list to an integer. compare_length with 1 n isequivalent to
compare (length 1) n,except that the computation stops after at most n iterations on the list.

Since 4.05.0

val cons : 'a -> 'a list -> 'a list
cons x xsiSx :: xs
Since 4.03.0

val hd : 'a list -> 'a

Return the first element of the given list. Raise Failure "hd" if the list is empty.

val t1l : 'a list -> 'a list

Return the given list without its first element. Raise Failure "t1" if the list is empty.

val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0. Raise
Failure "nth" if the list is too short. Raise Invalid argument "List.nth" if n is negative.

val nth opt : 'a list -> int -> 'a option
Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the
list is too short. Raise Invalid_argument "List.nth" if n is negative.
Since 4.05

wal vaw + 'a lies N a liok

& compositional.pdf A @ multi-path-ch...pptx  ~ @ multi-path-ch...pptx

x | & Async
% @
ES sports

X

3 List X -+
onNE O :

»

ES Other Bookmarks

[ R

she_ [all 4 /)




Example Structure Inside a File

module ListIntStack : INT STACK =

struct
type stack = int list
let empty () : stack = []
let push (i1:int) (s:stack) : stack = 1i::s

let is empty (s:stack) =
match s with

| [] —> true
| :: —-> false
let pop (s:stack) : stack =
match s with
[ => []
| it >t
let top (s:stack) : 1int option =
match s with
| [] —> None
| h:: —-> Some h

end




Example Structure Inside a File

module ListIntStack : INT STACK =

struct
type stack = int list Inside the module,
let empty () : stack = [] we know the

let push (i1:int) (s:stack)
let is empty (s:stack) =
match s with
| [] —> true
| :: —-> false
let pop (s:stack) : stack =
match s with
[ => []
| it >t
let top (s:stack) : 1int option =
match s with
| [] —> None

| h:: -> Some h

concrete type used
to implement the
abstract type.

end




Example Structure Inside a File

module ListIntStack : INT STACK =

struct
type stack = int list
let empty () : stack = []

But by giving the
module the INT_STACK
interface, which does
not reveal how stacks

let push (1:1int) (s:stack) =
let is empty (s:stack) =
match s with

| [1 -> true are being represented,
| :: —=> false we prevent code
let pop (s:stack) : stack = outside the module
match s with from knowing stacks
| (1 -> [] are lists.
| >t

let top (s:stack) : 1int option =
match s with
| [] —> None
| h:: —-> Some h

end [it



An Example Client

module ListIntStack : INT STACK =
struct

end

let sO

ListIntStack.empty ()
let sl ListIntStack.push 3 sO0
let s2 ListIntStack.push 4 sl
let x = ListIntStack.top s2




An Example Client

module ListIntStack : INT STACK =

struct

end
let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 sO0

let s2 = ListIntStack.push 4 sl
let x = ListIntStack.top s2

sO ListIntStack.stack
sl : ListIntStack.stack
s2 ListIntStack.stack




An Example Client

module type INT STACK =
sig
type stack
val push : int -> stack -> stack
end
module ListIntStack : INT STACK Notice that the
- client is not

allowed to know
that the stack is a
list.

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s
let s2 = ListIntStack.pus
let = List.rev s2

Error: This expression has type stack but an
expression was expected of type ‘a list.




Example Structure

module ListIntStack (*

struct
type stack = int list
let empty () stack = []
let push (i:int) (s:stack)
let is empty (s:stack) =

match s with

[ ]
| P -> false

—-> true

exception EmptyStack
let pop (s:stack) =
match s with
1 => T[]
| it >t
let top (s:stack) =
match s with
L]
| h::

—> None
-> Some h

end

INT STACK *) =

= 1 2:8




The Client without the Signature

module ListIntStack (* : INT STACK *) =
struct

end
let s = ListIntStack.empty ()

let s1 = ListIntStack.push 3 s
let s2 = ListIntStack.push 4 sl

If we don’t seal
the module with
a signature, the
client can know
that stacks are
lists.

let x = List.rev s2
X : 1int list = [3; 4]




Example Structure

module type INT STACK =
sig
type stack
val inspect : stack -> int list
val run unit tests : unit -> unit
end Another technique:

Add testing components to

module ListIntStack : INT STACK = your signature.

struct .
Or have 2 signatures, one

for testing and one for the
rest of the code)

type stack = 1nt list

let inspect (s:stack) : int list =
let run unit tests () : unit = ... B

end




[ Summary

ML modules support development of abstract data types

— client programs help define the operations needed
* itis often useful to write them first
— signatures (ie, interfaces, .mli files) specify:
* abstract types
* names of operations and their types
e names of abstract values
— structures (ie, implementations, .ml files) provide:
* the concrete implementation types
* the function implementations
e the values to implement signatures
— when a signature is omitted, OCaml assumes the default signature,
which allows clients to see all implementation details

e over time, clients are going to depend upon details you don't want them
to, making it hard to change ADT implementations C

37



