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WHY IT’S IMPORTANT TO PRUNE 
CLOSURE ENVIRONMENTS

A remark about homework 4



Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000
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What variables are in scope at this point ? 

fun()->k

n x k
You could build a closure environment 
with all the variables currently in scope.
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What are the free variables of this function? 

fun()->k

n x k

5 words of memory versus 3 words, what’s the big deal?
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Run the program to here, and what is in memory?

n

bigdata fun()->k
fun()->k

fun()->k



What variables are in scope at this point ? 
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bigdata fun()->k
fun()->k fun()->k

n x k

0 0 0

n

n closures for (fun()->k),
each is a list of length n,

total space usage n2
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let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in
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bigdata fun()->k
fun()->k fun()->k
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What are the free variables of this function? 

n closures for (fun()->k),
each is just a number k,
total space usage O(n)



Therefore
Closures should represent only the free variables of a function
(not all the variables currently in scope),

otherwise the compiled program may use
asymptotically more space,

such as   O(n2) instead of O(n)


