
Pruning closures
in your environment-based interpreter

COS 326
Presented by: Andrew W. Appel

Princeton University

slides copyright 2019 Andrew W. Appel and David Walker
permission granted to reuse these slides for non-commercial educational purposes

WHY IT’S IMPORTANT TO PRUNE
CLOSURE ENVIRONMENTS

A remark about homework 4

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

What variables are in scope at this point ?

fun()->k

n x k
You could build a closure environment
with all the variables currently in scope.

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

fun()->k

k

What are the free variables of this function?

fun()->k

n x k

5 words of memory versus 3 words, what’s the big deal?

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Run the program to here, and what is in memory?

n

bigdata fun()->k
fun()->k

fun()->k

What variables are in scope at this point ?

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata fun()->k
fun()->k fun()->k

n x k

0 0 0

n

n closures for (fun()->k),
each is a list of length n,

total space usage n2

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

let f x =

let k = List.length x in
fun () -> k

in

let rec g i : (unit->int) list =

if i=0 then [] else f (zeros n) :: g (i-1)

in let bigdata = g n

in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata fun()->k
fun()->k fun()->k

k

What are the free variables of this function?

n closures for (fun()->k),
each is just a number k,
total space usage O(n)

Therefore
Closures should represent only the free variables of a function
(not all the variables currently in scope),

otherwise the compiled program may use
asymptotically more space,

such as O(n2) instead of O(n)

