
How OCaml is compiled
to a von Neumann machine

Speaker: Andrew Appel
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

1

Two models for OCaml

e1 --> v1 e2 --> v2 eval_op (v1, op, v2) == v
e1 op e2 --> v

i ϵ Z
i --> i

e1 --> v1 e2 [v1/x] --> v2
let x = e1 in e2 --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2 e[v2/x] --> v
e1 e2 --> v

e1 --> rec f x = e e2 --> v2 e[rec f x = e/f][v2/x] --> v3
e1 e2 --> v3

2

let rec eval (e:exp) : exp =
match e with
| Int_e i -> Int_e i
| Op_e(e1,op,e2) ->

eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) ->

eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)
| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) ->

(match eval e1
| Fun_e (x,e) ->

eval (Let_e (x,e2,e))
| _ -> raise TypeError)

| LetRec_e (x,e1,e2) ->
(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f

(substitute v x e)

Interpreter Operational semantics

Another model of computation

3

com·put·er
/kəmˈpyo͞odər/
noun
1. an electronic device for storing and
processing data, typically in binary form,
according to instructions given to it in a
variable program.

https://www.google.com/search?q=how+to+pronounce+computer&stick=H4sIAAAAAAAAAOMIfcRoxS3w8sc9YSnDSWtOXmPU5uINKMrPK81LzkwsyczPExLhYglJLcoV4pHi4uJIzs8tKC1JLbJiUWJKzeNZxCqZkV-uUJKvUADUkw_UlKoAUwIAbeK-EFsAAAA&pron_lang=en&pron_country=us&sa=X&ved=2ahUKEwiFjcSQ25XrAhVBzlkKHUPOBtkQ3eEDMAB6BAgDEAg

John Von Neumann (1903-1957)
• Scientific achievements

– Stored program computers
– Cellular automata
– Inventor of game theory
– Nuclear physics

• Princeton Univ. & Princeton I.A.S. 1930-1957
• Known for “Von Neumann architecture” (1950)

– In which programs are just data in the memory

4 4

Von Neumann Architecture

5 5

RAM

Control
Unit

CPU

Registers

Data bus

ALU

Instructions are
fetched from RAM

So is data

How OCaml is compiled to machine language

• Variables
• Integers
• Constant constructors
• Value-carrying constructors
• Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

6

type t =
A | B
| C of int | D of t*t

Variables

7

Variables are kept in registers,
just as in the translation of C programs
to assembly language

OCaml

let x = 3 in …

Assembly language

move 3, r2

When you do a function call, variables whose values will still be needed
after the call, will be stored into the stack frame, just as in the translation
of C programs to assembly language

If you have more active variables in your function than your machine has
registers, some variables will be kept in the stack frame instead of registers,
j.a.i.t.t.o.C.p.t.a.l

Integers

8

OCaml

let x = 3 in …

Assembly language

move 7, r2

The garbage collector needs to distinguish
integers from pointers. OCaml does that
by using the last bit of the word:
(Word-aligned) pointers end in 00 (binary)
Integers end in 1 (binary)

So, integer N is really stored as 2N+1

And, on a 64-bit-word machine, you really only get 63-bit integers

There was a liFle fib on the previous slide

Constant constructors

9

type t =
A | B
| C of int | D of t*t

A is represented as 1 (the first odd number)
B is represented as 3 (the second odd number)

This is similar to how C programs represent NULL as 0

Value-carrying constructors

10

type t =
A | B
| C of int | D of t*t

This is similar to how C programs represent malloc’ed struct-pointers

OCaml

let p = C 3 in
let q = D p p in …

7p
1 0 header

data word(s)

0 fo
r “

firs
t v

alue-

carry
ing c

onstr
ucto

r”

ho
w m

an
y

da
ta

 w
or

ds

q
2 1

Not malloc/free !
• You may be familiar with how C’s malloc/free system works
• Malloc is somewhat expensive:

– func;on call
– find right-size block in data structure
– update data structure, ini;alize header and footer

• Free is somewhat expensive:
– func;on call
– update data structure
– test for coalescing (?)

• OCaml (and other funcXonal languages) have a different
system

11

base

alloc

limit

Nursery Older generation
(much larger)

The heap and the nursery

12

Machine
registers
(and stack)

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

13

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

en
ou

gh
 sp

ac
e?

base

alloc

limit

Nursery Older genera<on
(much larger)

How to allocate a constructed value

14

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

15

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

16

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

17

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add r5+1 → r3

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

base

alloc

limit

Nursery Older generation
(much larger)

How to allocate a constructed value

18

Machine
registers
(and stack)

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add r5+1 → r3
add r5+3 → r5

r1
r2

r6
r5

limit
alloc

let q = D p p in …

p
q

2 1

How to allocate a constructed value

19

Assembly language

if r5+3>r6 goto GC
store (0|2|1), r5[0]
store r2, r5[1]
store r2, r5[2]
add r5+1 → r3
add r5+3 → r5

let q = D p p in …

type t =
A | B
| C of int | D of t*t

test for space available
store the header word
store first field
store second field
assign the result (q)
adjust the “alloc” pointer

initialize the fields

2 instructions

2 instructions

WHEN THE NURSERY FILLS UP . . .

GARBAGE COLLECTION!

What happens

20

base

alloc
limit

Nursery Older generation
(much larger)

The nursery is full

21

Machine
registers
(and stack)

r1
r2

r6
r5

limit
alloc

2 1

base

alloc
limit

Nursery Older generation
(much larger)

22

Machine
registers
(and stack)

r1
r2

r6
r5

2 1

Only these records are reachable

base

alloc
limit

Nursery Older genera<on
(much larger)

23

Machine
registers
(and stack)

r1
r2

r6
r5

2 1

Move reachable records to older generaSon

(by breadth-first search)

base
alloc

limit

Nursery Older generation
(much larger)

24

Machine
registers
(and stack)

r1
r2

r6
r5

2 1

Reset “alloc” pointer of Nursery

How OCaml is compiled to machine language

ü Variables
ü Integers
ü Constant constructors
ü Value-carrying constructors
• PaZern-matching
• Let x = exp in exp
• FuncXon definiXon
• FuncXon call
• Tail call

25

type t =
A | B
| C of int | D of t*t

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp4 i j

26

type t =
A | B
| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if r3=0 goto Boxed
handle cases A,B
goto Done
Boxed:
handle cases C,D
Done:

First, test whether the constructed
value is “unboxed” (constant constructor)
or “boxed” (value-carrying constructor)

PaWern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp4 i j

27

type t =
A | B
| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if r3=0 goto Boxed
(if r2=1 then exp1 else exp2)
goto Done
Boxed:
handle cases C,D
Done:

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp4 i j

28

type t =
A | B
| C of int | D of t*t

Assembly language
(suppose x is in register r2)

andb r2,1 → r3
if r3=0 goto Boxed
handle cases A,B
goto Done
Boxed:
load r2[-1] → r3
andb 127,r3 → r3
(if r3=0 then C else D)

Done:

7c
1 0 header

d
2 1

Pattern-matching
match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D(i,j) -> exp i j

29

type t =
A | B
| C of int | D of t*t

Assembly language
(suppose x is in register r2)

D case:
load r2[0] → r4
load r2[1] → r5

7c
1 0 header

d
2 1

(fetch i)
(fetch j)

Summary of PaWern-matching

match x with
| A -> exp1
| B -> exp2
| C i -> exp3(i)
| D (i,j) -> exp4 i j

30

Conditional branches
(or switch-statement) Memory loads

How OCaml is compiled to machine language

ü Variables
ü Integers
ü Constant constructors
ü Value-carrying constructors
ü Pattern-matching
• Let x = exp in exp
• Function definition
• Function call
• Tail call

31

let x = y + z in …

Almost as simple as,

32

let x = y + z in …
Machine
registers
(and stack)

r1
r2

yr3

z

Assembly language

add r3+r1 → r4

But remember, in order to make integers distinguishable from pointers,
OCaml represents integers with low-order-bit 1,
which is to say, r3=2y+1 r1=2z+1
and we need to compute r4=2(y+z)+1

Assembly language

add r3+r1 → r4
sub r4-1 → r4

Function definitions

More or less, a function is translated as a
label in assembly language, which stands for
an address in machine language,
where some machine instructions implement the function:

But there is one important difference
from the way C functions are compiled!

33

fun x -> x+1

Assembly language
f:
add r0+2 → r0
ret

Function definitions

Free variables! (in this case, x and y)

34

(fun w -> x+w+y)

Assembly language
f:

um, how do I know the values of x and y?

ret

FuncSon definiSons

Free variables! (in this case, x and y)

35

(fun w -> x+w+y)

Assembly language
f_code:

get x and y from environment-pointer

ret

x
y

code
environment

“closure”

Function definitions

36

(fun w -> x+w+y)

code
env

x
y

base

alloc

limit

Nursery Older generation

Evaluating “fun … -> …”

is like constructing two
records on the heap

. . .

and will be garbage-collected
when no longer in use

Function call

37

let y = f(x) in …

Assembly language
f_code:

get free vars from env

ret

code
env

f

Assembly language

push saved locals on stack
move x → r1 # arg
load f[1] → r2 # env
load f[0] → r3 # code
call r3
pop saved locals from stack

Tail call

38

f(x)

Assembly language
f_code:

get free vars from env

ret

code
env

f

Assembly language

move x → r1 # arg
load f[1] → r2 # env
load f[0] → r3 # code
jmp r3

Conclusion
• Each feature of the OCaml language is implemented in a few

instrucXons of machine language

• Some of these features work just like their counterparts in C,

• What’s different:
– garbage collec;on, instead of malloc/free
– func;on closures
– dis;nguishing integers from pointers, by low-order bit

39

