
Generalizing your
Induction Hypothesis

Speaker: Andrew Appel
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

1



A PROOF ABOUT TWO TREES
Image credit: pxfuel.com, licensed for free use 2



Reflection tester
type tree = Leaf of int | Node of tree * tree

1 2
3

12
3mirror = true

1 2
3mirror = false

3 2
1

3



Reflection tester
type tree = Leaf of int | Node of tree * tree

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> mirror b b' && mirror a a')

1 2
3

12
3mirror = true

1 2
3mirror = false

3 2
1

4



Examples

1 2
3

12
3

mirror  foo  bar  =  true mirror  foo  baz =  false 

3 2
1

let foo = Node(Node(Leaf 1, Leaf 2), Leaf 3)

let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

let baz = Node(Node(Leaf 3, Leaf 2), Leaf 1)

5



Claim!

1 2
3

12
3

3 2
1

foo bar baz

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

Examples:
mirror foo bar = true = mirror bar foo
mirror foo baz = false = mirror baz foo

6



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
==

== mirror bar t

• • • (we hope)

7



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false

== mirror bar t

• • • (we hope)

8



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false

== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t

• • • (we hope)

9



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Proof:
By induction on t.
Case: t = Leaf i

mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_,_) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j -> i=j | Node(_,_) -> false
== false
== false
== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bar t

Done with this case!
10



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && mirror a a')

Where a and b satisfy I.H.,
mirror a bar = mirror bar a
mirror b bar = mirror bar b

11



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && mirror a a')12



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

== mirror bar t

• • • (we hope)

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && mirror a a')13



let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

• • • (we hope)

14



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3) 

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

• • • (we hope)

15



Proof attempt 1

12
3

Theorem:    Ɐ t:tree.     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3) 

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

16



FAIL!

12
3

Theorem:    Ɐ t:tree,     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _ -> false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3) 

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

Induction hyp tells us:
mirror a bar = mirror bar a
mirror b bar = mirror bar b

17



What’s the problem?

18



What’s the problem?

bar

19



Solution: prove a more general theorem!

12
3

Theorem:    Ɐ t:tree,     mirror t bar = mirror bar t

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

20



Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t

21



Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume an arbitrary  u  about which we know nothing (except its type, “tree”)

22



Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Need to prove:   mirror t u = mirror u t

23



Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

24



Proof!

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

25



Now, need case analysis on u

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.

mirror t u
== mirror (Leaf i) u
== match  u  with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

26



Case analysis on u: first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

27



Case analysis on u: first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)

== mirror u t

• • •

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

28



Case analysis on u: first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)

== mirror (Leaf j) (Leaf i)
== mirror u t

•••

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

29



First subcase done

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Leaf j

mirror t u
== mirror (Leaf i) u
== match u with Leaf j -> i=j | Node(_,_) -> false
== (i=j)
== (j=i)
== mirror (Leaf j) (Leaf i)
== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

Done with Subcase (u=Leaf j).

30



Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
==

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

31



Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

32



Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

• • •

33



Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== mirror (Node(g,h) (Leaf i)
== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

• • •

34



Case analysis on u: second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false

== false
== mirror (Node(g,h) (Leaf i)
== mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

35



Case analysis on u: second subcase done.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false
== mirror (Node(g,h) (Leaf i)
== mirror u t

Done with Subcase (u=Node(g,h)).
Done with Case (t=Leaf i).

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

36



Case analysis on t:  second case

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

37



Case analysis on t:  second case

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Need to prove:   mirror t u = mirror u t

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

38



Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
==

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

39



Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

40



Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

41



Case analysis on u:  first subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b)) let rec mirror t1 t2  =

match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

42



Case analysis on u:  first subcase done.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf i.

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b))
== mirror u t

Done with Subcase (u=Leaf i).   

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

43



Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
==

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

44



Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

45



Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

46



Case analysis on u:  second subcase

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h let rec mirror t1 t2  =

match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

47



What does the induction hypothesis tell us?

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h Induction hyp tells us:

Ɐ u:tree. mirror a u = mirror u a
and

Ɐ u:tree. mirror b u = mirror u b

Why?  Because a and b are the immediate subtrees of t

48



What does the induction hypothesis tell us?

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h
== mirror b a && mirror b h

Induction hyp tells us:
Ɐ u:tree. mirror a u = mirror u a

and
Ɐ u:tree. mirror b u = mirror u b

49



What does the induction hypothesis tell us?

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a b && mirror b h
== mirror b a && mirror b h
== mirror b a && mirror h b

Induction hyp tells us:
Ɐ u:tree. mirror a u = mirror u a

and
Ɐ u:tree. mirror b u = mirror u b

50



Finishing the proof

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

51



Finishing the proof.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror u t

Done with Subcase (u=Node(g,h)),
Done with Case (t=Node(a,b)

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

52



Finishing the proof.

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirror a g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))
== mirror u t

Done with Subcase (u=Node(g,h)),
Done with Case (t=Node(a,b)
QED

let rec mirror t1 t2  =
match t1 with
| Leaf i -> (match t2 with

| Leaf j -> i=j
| Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _ -> false
| Node (b',a') -> 

mirror b b' && 
mirror a a')

53



Summary of the proof

Theorem:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof:
By induction on t.
Case: t = Leaf i

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf j

mirror t u ==  . . . == mirror u t
Subcase:  u = Node(g,h)

mirror t u ==  . . . == mirror u t
Case: t = Node(a,b)

Need to prove:   Ɐ u:tree. mirror t u = mirror u t
Assume u: tree.
Subcase:  u = Leaf j

mirror t u ==  . . . == mirror u t
Subcase:  u = Node(g,h)

mirror t u ==  . . . == mirror u t
QED 54



Our original proof goal

Theorem 1:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof . . . QED

Theorem 2:    Ɐ t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.

55



Our original proof goal

Theorem 1:    Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t
Proof . . . QED

Theorem 2:    Ɐ t:tree. mirror t bar = mirror bar t
Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.
Apply Theorem 1,  instantiating variable t with t, instantiating u with bar.

QED.

56



WHEN PROVING BY INDUCTION,
SOMETIMES YOU MUST
GENERALIZE THE THEOREM

(OR ELSE THE INDUCTION HYPOTHESIS WON’T FIT)

Moral of the story:

57



Another example
let rec same (i: int) (j: int) : bool =
if i=0 then j=0
else j>0 && same (i-1) (j-1)

Claim:   Ɐ x:nat. same x 3 = same 3 x
Remark: x:nat  means that x≥0

Examples:
same 3 3  =  true   =  same 3 3
same 4 3  =  false  =  same 3 4

58



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x

59



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== 

== same 3 x

• • •

60



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …

== same 3 x

• • •

61



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false

== same 3 x

• • •

62



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false

== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
== same 3 x

• • •

63



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=0

same x 3
== same 0 3
== if 0=0 then 3=0 else …
== 3=0
== false
== false && same (3-1) (0-1)
== 0>0 && same (3-1) (0-1)
== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
== same 3 x

Done with Case: x=0.
64



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3

== same 3 x

• • •

Where a satisfies I.H.,
same a 3  =  same 3 a

65



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)

== same 3 x

• • •

66



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 3 x

• • •

67



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 2 a
== a+1>0 && same 2 a
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
== same 3 x

•••

68



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: Ɐ x:nat.   same x 3 = same 3 x
By induction on x.
Case: x=a+1,  where a:nat

same x 3
== same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
== same a 2

== same 2 a
== a+1>0 && same 2 a
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
== same 3 x

••• Induction hyp tells us:
same a 3 = same 3 a

69



What’s the problem?

3x

x-1
x-2
x-3

70



What’s the problem?

yx

x-1
x-2
x-3

y-1
y-2
y-3

71



Now prove this!
let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem 3: Ɐ x:nat.   same x three = same three x

First, prove a more general theorem:

Theorem 4: Ɐ x:nat. Ɐ y:nat. same x y = same y x

72



Exercise
• Finish the proof yourself!

It looks just like the proof about
Ɐ t:tree. Ɐ u:tree. mirror t u = mirror u t

73



WALK DOWN BOTH TREES TOGETHER, 
IN YOUR PROOF;

DON’T STAY AT THE ROOT OF ONE OF THE TREES.

Conclusion:

74


