Generalizing your
Induction Hypothesis

Speaker: Andrew Appel
COS 326 &,
Princeton University

slides copyright 2020 David Walker and Andrew Wi Anizel
permission granted to reuse these slides for non-commercial educational purposes



A PROOF ABOUT TWO TREES

Image credit: pxfuel.com, licensed for free use

2‘\



[ Reflection tester

type tree = Leaf of int | Node of tree * tree

1 2 2 1 1 2 3 2

SN

4 ) 4 )
mirror 3 3/>\ = true mirror 3 /<\1 = false
J

- -




Reflection tester

type tree = Leaf of int | Node of tree * tree

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a') -> mirror b b' && mirror a a')

-

-

) 4 )
mirror /<\3, 3/>\ = true mirror /<\3 /<\1 = false
1 2 2 1 1 2

3 2

J -

i

Y




Examples

o>

let foo = Node(Node(Leaf 1, Leaf 2), Leaf 3)

[EEY
N

let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1))

>>

-

2 1
let baz = Node(Node(Leaf 3, Leaf 2), Leaf 1) 3
3 2
) 4
mirror foo bar = true mirror foo baz = false
J \_




foo bar baz
AN N A
1 2 2 1 3 2

Theorem: V t:tree. mirrortbar=mirror bart

Examples:
mirror foo bar = true = mirror bar foo
mirror foo baz = false = mirror baz foo



Proof attempt 1

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Proof:

By induction on t.

Case: t = Leaf i
mirror t bar

. (we hope)

== mirror bar t



Proof attempt 1 ]

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Proof:
By induction on t.
Case: t = Leaf i
mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_, ) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j->i=j | Node(_,_ ) -> false

. (we hope)

== mirror bar t



Proof attempt 1 ]

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Proof:
By induction on t.
Case: t = Leaf i
mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_, ) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j->i=j | Node(_,_ ) -> false

. (we hope)

== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bart



Proof attempt 1 ]

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Proof:
By induction on t.
Case: t = Leaf i
mirror t bar
== mirror (Leaf i) bar
== match bar with Leaf j -> i=j | Node(_, ) -> false
== match Node(Leaf 3, Node(Leaf 2, Leaf 1)) with Leaf j->i=j | Node(_,_ ) -> false

== mirror (Node(Leaf 3,Node(Leaf 2, Leaf 1))) (Leaf i)
== mirror bart

Done with this case!
10



Proof attempt 1 ]

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar = mirror bart
— Where aand b satisfy I.H.,

mirror a bar = mirror bar a
mirror b bar = mirror bar b

Case: t = Node(a,b) —=
mirror t bar
== mirror (Node (a,b)) bar

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a') ->
mirror b b' &8& mirror a a')

. (we hope)

== mirror bar t



Proof attempt 1 ]

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _->false | Node(b’,a’) -> mirror b b’ && mirror a a’

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a') ->
mirror b b' &8& mirror a a')

. (we hope)

== mirror bar t



Proof attempt 1 ]

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _->false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

let rec mirror (t1: tree) (t2: tree) : bool =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) ->false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a') ->
mirror b b' &8& mirror a a')

. (we hope)

== mirror bar t



Proof attempt 1

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _->false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))

let rec mirrortlt2 =
match t1 with

: (We hope) | Leafi-> (match t2 with
° | Leaf j -> i=j
| Node(_, ) -> false)
== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b | Node(a,b) -> (match t2 with
== mirror (Node(Leaf 3, Node(_, ))) (Node(a,b)) | Leaf _ ->false
== mirror bart | Node (b, 244

mirror bfh,' &
2\

mirroraa')



Proof attempt 1

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _->false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
== mirror a (Node(Leaf 2, Leaf 1)) && mirror b (Leaf 3)

. (we hope)
== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b

== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

15



Proof attempt 1

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:tree. mirrortbar=mirror bart

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _->false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
==lmirror a (Node(Leaf 2, Leaf 1)1) &8: mirror b (Leaf TD’)

3 |

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_,_))) (Node(a,b))
== mirror bar t

16



|

FAIL! |

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:itree, mirrortbar = mirror bart

Case: t = Node(a,b)
mirror t bar
== mirror (Node (a,b)) bar
== match bar with Leaf _->false | Node(b’,a’) -> mirror b b’ && mirror a a’
== mirror b (Leaf 3) && mirror a (Node(Leaf 2, Leaf 1))
==lmirror a (Node(Leaf 2, Leaf 1)1) &8: mirror b (Leaf ?)

Induction hyp tells us:
‘ ‘ mirror a bar = mirror bar a
mirror b bar = mirror bar b

== mirror (Node(Leaf 2, Leaf 1)) a && mirror (Leaf 3) b
== mirror (Node(Leaf 3, Node(_, ))) (Node(a,b)) e 0
== mirror bart

17



What’s the problem?

NS



What’s the problem?

NS



Solution: prove a more general theorem!

type tree = Leaf of int | Node of tree * tree
let bar = Node(Leaf 3, Node(Leaf 2, Leaf 1)) />\
3

2 1
Theorem: V t:itree, mirrortbar = mirror bart

Theorem: V t:tree.V u:tree. mirrort u=mirrorut

20



Proof!

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut

21



Proof!

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut
Assume an arbitrary u about which we know nothing (except its type, “tree”)

22N



Proof!

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Need to prove: mirrortu=mirrorut

25



Proof!

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
mirror t u
== mirror (Leaf i) u

let rec mirrortlt2 =
match t1 with

° | Leaf i -> (match t2 with
[ ]

==mirrorut

| Leaf j -> i=j
| Node(_, ) ->false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a"} -~
mirror bzk}: &

mirroraa')



Proof!

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
mirror t u
== mirror (Leaf i) u
== match u with Leaf j ->i=j | Node(_, ) -> false

let rec mirrortlt2 =
match t1 with

° | Leaf i -> (match t2 with
[ ]

==mirrorut

| Leaf j -> i=j
| Node(_, ) ->false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a"} -~
mirror bzbb_' &
mirror a a')



Now, need case analysis on u

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
mirror t u
== mirror (Leaf i) u
== match@with Leaf j -> i=j | Node(_, ) -> false

==mirrorut

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bztz)' &

mirror a a')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf j
mirror t u
== mirror (Leaf i) u

== match u with I—eafj -> i=] | NOdE(_,_) -> false let rec mirror t1t2 =

match t1 with

° | Leaf i -> (match t2 with
[ ]

==mirrorut

| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bzbl,' &
mirror a a')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.

Subcase: u = Leaf j
mirror t u

== mirror (Leaf i) u

== match u with Leaf j -> i=j | Node(_, ) -> false

= (i<}

==mirrorut

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bﬂ_‘ &

mirror a a')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leaf i

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.

Subcase: u = Leaf j
mirror t u

== mirror (Leaf i) u

== match u with Leaf j -> i=j | Node(_, ) -> false

=< (=)

== mirror (Leaf j) (Leaf i)

==mirrorut

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bzbsl &

mirror a a')



First subcase done

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leafi

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.

Subcase: u = Leaf j
mirror t u

== mirror (Leaf i) u

== match u with Leaf j -> i=j | Node(_,_) -> false

= (i<}
= (j=i

== mirror (Leaf j) (Leaf i)

== mirrorut

Done with Subcase (u=Leaf j).

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bg%' &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leafi

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.
Subcase: u = Node(g,h)
mirror t u

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror bébil &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Leafi
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h)
mirror t u
== mirror (Leaf i) (Node(g,h))

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror bgk}' &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Leafi
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u

== mirror (Leaf i) (Node(g,h))
== false

R let rec mirrortlt2 =

° match t1 with

® | Leaf i -> (match t2 with

_ | Leaf j -> i=j

==mirror ut | Node(_, ) -> false)

| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror bgt}; Q&
mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Leafi
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u

== mirror (Leaf i) (Node(g,h))
== false

° let rec mirrort1t2 =

® match t1 with

[ )

. . | Leaf i -> (match t2 with

== mirror (Node(g,h) (Leaf i) | Leaf | -> i=i
== mirror u t | Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bgkz;l &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Leafi
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false
let rec mirrortl t2 =
== false rlnf;:? it-1>vzlrl:12tch t2 with
== mirror (Node(g,h) (Leaf i) | Leaf | -> i=i
== mirror ut | Node(_, ) -> false)

| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror bgbbl Q&
mirror a a')



Case analysis on u: second subcase done.

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Leafi
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h)

mirror t u
== mirror (Leaf i) (Node(g,h))
== false
== mirror (Node(g,h) (Leaf i) 2l g ey il 62 =
—= mirror u t match t1 with
Done with Subcase (u=Node(g,h)). | Leatl=> (;mLaet::jt_i:th
Done with Case (t=Leaf i). | Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bgk%' &

mirror a a')



Case analysis on t: second case

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bgh;' &

mirroraa')



Case analysis on t: second case

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Need to prove: mirrortu=mirrorut

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) ->false)
| Node(a,b) -> (match t2 with
| Leaf _->false
| Node (b',a"} -~
mirror bgk})' &

mirroraa')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf .
mirror t u

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror b%’ &

mirror a a')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf .
mirror t u
== mirror (Node(a,b)) (Leaf i)

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror bzf’o' &

mirror a a')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.
Subcase: u = Leafi.
mirror t u

== mirror (Node(a,b)) (Leaf i)

== false

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bzﬁl &

mirror a a')



Case analysis on u: first subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf .
mirror t u
== mirror (Node(a,b)) (Leaf i)

== mirror (Leaf i) (Node(a,b)) let rec mirror t1 2 =
match t1 with

| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bzf}' &

mirror a a')



Case analysis on u: first subcase done.

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf .

mirror t u
== mirror (Node(a,b)) (Leaf i)
== false
== mirror (Leaf i) (Node(a,b)) let rec mirror t1 2 =
. match t1 with
==mirrorut : :
| Leaf i -> (match t2 with

. . | Leaf j -> i=j

Done with Subcase (u=Leaf i). | Node(_,_) -> false)

| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror bzf},' &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h).
mirror t u

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror b&' &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h).
mirror t u
== mirror (Node(a,b)) (Node(g,h))

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a"} -~
mirror bZPS' &
mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.
Subcase: u = Node(g,h).
mirror t u
== mirror (Node(a,b)) (Node(g,h))
==mirror b h && mirrora g

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror b&' &

mirror a a')



Case analysis on u: second subcase

Theorem: V t:tree.V u:tree. mirrortu=mirrorut
Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.

Subcase: u = Node(g,h).
mirror t u

== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirrora g

== mirror a b && mirror b h VI8 B G (4 122 =

match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror £ Q. (k&

iy
mirror a a')



What does the induction hypothesis tell us?

Theorem: V t:tree.[V u:tree. mirrort u =mirrorut ]

Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.
Subcase: u = Node(g,h).
mirror t u

== mirror (Node(a,b)) (Node(g,h))

== mirror b h && mirrora g
== mirror a b && mirror b h

Induction hyp tells us:

V u:tree. mirror a u = mirror u a
and

VY u:tree. mirror b u =mirrorub

o

~

)

Why? Because a and b are the immediate subtrees of t

45



What does the induction hypothesis tell us?

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.
Subcase: u = Node(g,h).
mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirrora g

=zmirror a b>3&& mirror b h
=xmirror b a&& mirror b h

and

Y u:tree. mirror b u = mirrorub

o

Inducti :
Y u:tree. mirror a u = mirror u

~

J

43



What does the induction hypothesis tell us?

Theorem: V t:tree. V u:tree. mirrortu=mirrorut
Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h).

mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirrora g 4 N
== mirror a b && mirror b h Induction hyp tells us:
—= mirror b a &&mirror b h V u:tree. mirror a u = mirror u a
== mi M h and
mirror b a &&qirror h @ree. c—— mirr@

o J




Finishing the proof

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)

Need to prove: V u:tree. mirrortu=mirrorut

Assume u: tree.
Subcase: u = Node(g,h).
mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirrora g
== mirror a g && mirror b h
== mirror g a && mirror b h
== mirror g a && mirror h b
== mirror (Node(g,h)) (Node(a,b))

let rec mirrortlt2 =
match t1 with
| Leaf i -> (match t2 with
| Leaf j -> i=j
| Node(_, ) -> false)
| Node(a,b) -> (match t2 with
| Leaf _-> false
| Node (b',a'} -
mirror b5b1' &
mirror a a')



Finishing the proof.

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h).
mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirrora g
== mirror a g && mirror b h VI8 (28 ERITOF il 2 =
== mirror g a && mirror b h match t with ,
. . | Leaf i -> (match t2 with
== mirror g a && mirror h b

) | Leaf j -> i=j
== mirror (Node(g,h)) (Node(a,b)) | Node(_,_) -> false)
== mirrorut | Node(a,b) -> (match t2 with
Done with Subcase (u=Node(g,h)), | Leaf _-> false
Done with Case (t=Node(a,b) | Node (b',agr2

mirror b5k}' &

mirror a a')



Finishing the proof.

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:
By induction on t.
Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Node(g,h).
mirror t u
== mirror (Node(a,b)) (Node(g,h))
== mirror b h && mirrora g
== mirror a g && mirror b h let rec mirror t112 =
== mirror g a && mirror b h match t with ,
i . | Leaf i -> (match t2 with
== mirror g a && mirror h b

. | Leaf j-> i=j
== mirror (Node(g,h)) (Node(a,b)) | Node(_,_) -> false)
== mirror ut | Node(a,b) -> (match t2 with
Done with Subcase (u=Node(g,h)), | Leaf _->false
Done with Case (t=Node(a,b) | Node (b 212
mirror b X' &&
QED ’

mirror a a')



Summary of the proof

Theorem: V t:tree.V u:tree. mirrortu=mirrorut

Proof:

By induction on t.

Case: t = Leafi
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf |

mirrortu== ...==mirrorut
Subcase: u = Node(g,h)
mirrortu== ...==mirrorut

Case: t = Node(a,b)
Need to prove: V u:tree. mirrortu=mirrorut
Assume u: tree.
Subcase: u = Leaf |

mirrortu== ...==mirrorut
Subcase: u = Node(g,h)
mirrortu== ...==mirrorut

QED

528



Our original proof goal

Theorem 1: V t:tree.V u:tree. mirrortu=mirrorut
Proof...QED

Theorem 2: V t:tree. mirror t bar = mirror bart

Proof.
Assume t:tree.
Must prove: mirror t bar = mirror bar t.

55



Our original proof goal

Theorem 1: V t:tree.V u:tree. mirrortu=mirrorut
Proof...QED

Theorem 2: V t:tree. mirror t bar = mirror bart

Proof.
Assume t:tree.

Must prove: mirror t bar = mirror bar t.

Apply Theorem 1, instantiating variable t with t, instantiating u with bar.
QED.

56



WHEN PROVING BY INDUCTION,
SOMETIMES YOU MUST
GENERALIZE THE THEOREM

(OR ELSE THE INDUCTION HYPOTHESIS WON'T FIT)



Another example

let rec same (i: int) (j: int) : bool =
if i=0 then j=0
else j>0 && same (i-1) (j-1)

Claim: V x:nat. same x 3 =same 3 x
Remark: x:nat means that x=0

Examples:

same 33 = true = same33

false = same 34

same 4 3

55



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x3 =same 3 x

55



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat.
By induction on x.

Case: x=0
same x 3

==same 3 X

same X 3 =same 3 X

60N |



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 = same 3 X
By induction on x.
Case: x=0
same x 3
==same 0 3
== if 0=0 then 3=0 else ...

==same 3 X

61



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 = same 3 X
By induction on x.
Case: x=0
same x 3

==same 0 3

== if 0=0 then 3=0 else ...

== 3=0

== false

==same 3 X



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 = same 3 x
By induction on x.
Case: x=0
same x 3
==same 03
== if 0=0 then 3=0 else ...

== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)
==same 3 X

65



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 =same 3 x
By induction on x.
Case: x=0
same x 3

==same 03

== if 0=0 then 3=0 else ...

== 3=0

== false

== false && same (3-1) (0-1)

== 0>0 && same (3-1) (0-1)

== if 3=0 then 0=0 else 0>0 && same (3-1) (0-1)

== same 3 X

Done with Case: x=0.

B



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Th(?orem:. Vxinat. samex3=same 3 X (oo ifies LH..

By induction on x. same a3 = same 3 a
A\

Case: x=a+1, where a:nat

same x 3
==same (a+1) 3

==same 3 X

6N |



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat
same x 3
==same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)

==same 3 X

66



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 =same 3 x
By induction on x.
Case: x=a+1, where a:nat
same x 3
==same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
==samea 2

==same 3 X

67



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 =same 3 x
By induction on x.
Case: x=a+1, where a:nat
same x 3
==same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
== 3>0 && same a 2
==samea 2

==same 2 a
==a+1>0 && same 2 3
== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)

==same 3 X
65



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem: V x:nat. same x 3 = same 3 x
By induction on x.
Case: x=a+1, where a:nat
same x 3
==same (a+1) 3
== if (a+1)=0 then 3=0 else 3>0 && same (a+1-1) (3-1)
==3>0 && same a 2

==same a2 ~

o Induction hyp tells us: .
same a3 =same 3 a -

==same 2 3

== a+1>0 && same 2 a

== if 3=0 then (a+1)=0 else a+1>0 && same (3-1) (a+1-1)
==same 3 X

65



What’s the problem?

R S



What’s the problem?

N



Now prove this!

let rec same (i: int) (j: int) : bool = if i=0 then j=0 else j>0 && same (i-1) (j-1)

Theorem 3:V x:nat. same x three = same three x

First, prove a more general theorem:

Theorem 4:V x:nat. V y:nat. same xy =samey x



Exercise

* Finish the proof yourself!

It looks just like the proof about
VY t:tree. V u:tree. mirrort u=mirrorut

75



WALK DOWN BOTH TREES TOGETHER,
IN YOUR PROOF,;

DON’T STAY AT THE ROOT OF ONE OF THE TREES.



