A Functional Space Model

Speaker: David Walker
COS 326 i%

(LY LA
LI 3ve e Lj

Princeton University

C2))
slides copyright 2020 David Walker and Andrew .. Appel
permission granted to reuse these slides for non-commercial educational purposes

= VVOLEWTF

Can yoy tell q coder
From q cannibql? /
n';ufhernuﬁciqn From q
Murderep> Try to Spot
Who likeq hacking away qt

Corpseg rather than
Computerg

"{\ ’\ -\! * MORE STUFF

https://vole.wtf/coder-serial-killer-quiz/

https://vole.wtf/coder-serial-killer-quiz/

Space

Understanding the space complexity of functional programs

— At least two interesting components:
e the amount of live space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a functional program is roughly the same as the
number of writes by an imperative program

— What takes up space?
e conventional first-order data: tuples, lists, strings, datatypes
» function representations (closures)

e the call stack -

CONVENTIONAL DATA

OCaml Representations for Data Structures

Type:

type triple = int * char * int

Representation:

hN

(3,'a', 17)

OCaml Representations for Data Structures

Type:

type mylist = int list

Representation:

[] [3; 4; 5]

Space Model] 7

Type:

type tree = Leaf | Node of int * tree * tree

Representation:

Leaf Node(3, left, right)
0 \
Node
SN

Actually like this in Ocaml: 3 left
| Node| 3 left | right

Allocating space

In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (3j, insert left i, right)
else
Node (3j, left, insert right 1i)

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3j, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

Allocating space

]12

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

21 e e

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

15 o

21 e e

]13

Allocating space]“

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf) Consider.
| Node (j, left, right) ->)
if 1 <= j then
Node (3j, insert left i, right) insertt 21
else
Node (j, left, insert right 1)
t
AR\
an 9
)
9 15
| \ * \

a =

o o o o o o 15 e o E

Allocating space]15

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with

Leaf -> Node (i, Leaf, Leaf) Consider:
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right) insertt 21
else

Node (j, left, insert right 1)

15 o

21 e e

o o o o o o 15 e o E

Allocating space]16

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) = Tbtalsp?ce;aHocatedls
match t with proportional to the

Leaf -> Node (i, Leaf, Leaf) height ofthe tree
| Node (j, left, right) -> ’

if 1 <= j then
Node (j, insert left i, right) ~ |og n, if tree with n
else

Node (j, left, insert right i) nodes is balanced

15 o

21 e e

o o o o o o 15 e o E ‘

Net space allocated

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle (t:

insert t 21

tree)

N

John McCarthy

o o 15 e @

invented GC
1960
(PhD Princeton 1951,
student of Alonzo Church)
|
15 o
21 e e

Net space allocated

]18

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle (t:

insert t 21

tree)

o o 15 e @

If t i1s dead

(unreachable),

21 e e

Net

space allocated

]19

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle
insert t

(t: tree) =
21

If t is dead (unreachable), }

Then all these nodes
t \ will be reclaimed! :

21 e e

Net space allocated

]zo

The garbage collector reclaims

unreachable data structures ?D_thﬂ_hﬂaﬂ‘ﬁ

let fiddle (t:

insert t 21

tree)

-

Net new space allocated:
1 node

(just like “imperative” version

of binary search trees)

/

21 e e

Net space allocated

But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

faddle(t)

[/ =

21 e o

o o o o o o 15 e @

Net space allocated]22

But what if you want to keep the old tree?

let faddle (t: tree)
(t, insert t 21)

faddle(t)

e

/ ~~

T

\ space cost N new nodes! /

~

Net new space allocated:
log(N) nodes

but note: “imperative” version
would have to copy the old tree,

o o 15

21 e e

Compare

23

let check option (o:int option)
match o with
some -> O

int option =

| None -> failwith “found none”

let check option (o:int option)
match o with
Some j -> Some

int option =

| None -> failwith “found none”

Compare

let check option (o:int option) : int option =
match o with .
Some -> o _ allocates nothing
| None -> failwith “found none” when arg is Some i
let check option (o:int option) : int option =
match o with]
Some j -> Some _ allocates an option
| None -> failwith “found none” when arg is Some i

Compare

25

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

int*int =

Compare

26

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

cl c?2
1 2

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

int*int =

Compare

27

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

int*int =

Compare

28

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int) int*int =
let ¢c2 = ¢l in
cadd cl c2

let double (cl:int*int) int*int =
cadd cl cl

let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

Compare]29

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in

(x1+x2, yl+y2)

let double (cl:int*int) : int*int =
let c2 = cl in _ no allocation
cadd cl c2
let double (cl:int*int) : int*int = |
dd cl cl1 .
R _ no allocation
let double (cl:int*int) : int*int =
let (x1,yl) = cl in _ allocates 2 pairs
cadd (x1,yl) (x1,yl)

(unless the compiler .
~ happens to optir ré.lf,.”

Compare]3"

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in

(x1+x2, yl+y2)

let double (cl:int*int) : int*int =
let (x1,yl) = cl in double does not

cadd cl cl R\\\ allocate

extracts components: it is a read

)

FUNCTION CLOSURES

|

Closures (A reminder)]32

Nested functions like bar often contain free variables:

let foo y =
let bar x = x + y in
bar

Here's bar on its own:

let bar x = x + y

y is free in the
definition of bar

To implement bar, the compiler creates a closure, which is a pair of
code for the function plus an environment holding the free varia™ =s,

[But what about nested, higher-order functions?]33

bar again:

let bar x = x + y

bar's representation:

/

let f2 (n, env) = =
n + env.y

=

code - environment

closure

[But what about nested, higher-order functions?]3“

To estimate the (heap) space used by a program, we often need
to estimate the (heap) space used by its closures.

N

let £2 (n, env) = {y = 1}
n + env.y

code - environment

Our estimate will include the cost of the pair:
* fwo pointers = 2 words (8 bytes each, or 4 bytes each on some machines)
* the cost of the environment (1 word in this case).

e but not: the cost of the code (because the same code is
reused in every closure of this function) *

Space Model Summary

]35

Understanding space consumption in FP involves:

e understanding the difference between
* live space
* rate of allocation

* understanding where allocation occurs
e anytime a constructor is used
* whenever closures are created

e understanding the costs of

» data types (fairly similar to Java)
e costs of closures (cost of a pair of pointers + environment)

Exercise

let rec gen n =

if n <= 0 then
[]
else

n::gen (n-1)

let rec goo n =
if n <= 0 then
[]
else
(fun () -> gen n)::goo (n-1)

let rec gah n =
if n <= 0 then
[]

else
let 1 = gen n in
(fun () -> 1)::gah (n-1)

Assume 8-byte words. Estimate the size of the data structure
generated by a call to goo (respectively gah) in terms of their

arguments n. Explain your work. Discuss. B

