Did I Get it Right?
 Part 4: Induction for Datatypes

Speaker: David Walker

COS 326
Princeton University
http://~ cos326/notes/reasoning-data.php

Equational Reasoning: Some Key Ideas

What is the fundamental definition of expression equality ($\mathrm{e} 1==\mathrm{e} 2$)?

- two expressions are equal if:
- they evaluate to equal values, or
- they both raise the same exception
- they both fail to terminate
- note: we won't ask you to do proofs about expressions that don't terminate, use I/O or mutable data structures
What are some consequences of this definition?
- expression equality is reflexive, symmetric and transitive
- if e1 --> e2 then e1 == e2
- if $e 1==e 2$ then $e[e 1 / x]==e[e 2 / x]$. (substitution of equals for equals)

How do we prove things about recursive functions?

- we use proofs by induction
- to reason about recursive calls on smaller data, we assume the pron rty' we are trying to prove (ie, we use the induction hypothesis)

More General Template for Inductive Datatypes

$$
\text { type } t=C 1 \text { of } t 1 \mid C 2 \text { of } t 2|\ldots| C n \text { of } t n
$$

types t1, t2 ... tn, may contain 1 or more occurrences of t within them.

Examples:

More General Template for Inductive Datatypes

```
typet= C1 of t1 | C2 of t2 | ... | Cn of tn
```

Theorem: For all x : t, property(x).
Proof: By induction on structure of values x with type t.

More General Template for Inductive Datatypes

```
typet= C1 of t1 | C2 of t2 | ... | Cn of tn
```

Theorem: For all x : t, property(x).

Proof: By induction on structure of values x with type t.

Case: $x==C 1$ v:
... use IH on components of v that have type $t \ldots$

Case: $x==C 2$ v:
... use IH on components of v that have type t...

Case: $x==C n v:$
... use IH on components of v that have type $t \ldots$

A PROOF ABOUT TREES

Another example

```
type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree
let rec tm ft=
    match t with
        | Leaf -> Leaf
        | Node (x, I, r) -> Node (f x, tm fl, tm fr)
let (<>) fg=
    fun x -> f(gx)
```


Another example

```
type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree
```

let rectmft= match t with
| Leaf-> Leaf
| Node (x, I, r) -> Node ($\mathrm{f} x, \operatorname{tm} \mathrm{f}$ I, tm fr)
let (<>) $\mathrm{fg}=$ fun $x \rightarrow f(g x)$

Theorem:

For all (total) functions f: b -> c,
For all (total) functions $\mathrm{g}: \mathrm{a}->\mathrm{b}$,
For all trees t : a tree,
$\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

"Forall intro"

Theorem:

For all (total) functions f: b-> c,
For all (total) functions g : a -> b,
For all trees t : a tree, $\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

```
let rec tm ft=
    match t with
    | Leaf -> Leaf
    | Node (x, l, r) -> Node (f x, tm fl, tm f r)
```

let (<>) $\mathrm{fg}=$
fun $x->f(g x)$

To begin, let's pick an arbitrary total function f and total function g.
We'll prove the theorem without assuming any particular properties of f or g (other than the fact that the types match up). So, for the f and g we picked, we'll prove:

Theorem:

For all trees t : a tree,
$\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Another example

Theorem:
For all trees t : a tree, tm $\mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$
let rectmft= match t with | Leaf -> Leaf
| Node (x, I, r) -> Node (f x, tm fl, tm fr)
let $(<>) f g=$ fun $x->f(g x)$

Another example

Theorem:

For all trees t : a tree, $\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

```
let rec tm ft=
    match t with
    | Leaf -> Leaf
    | Node (x, I, r) -> Node (f x, tm fl, tm f r)
let (<>) fg=
    fun x -> f(gx)
```

Case: $\mathrm{t}=$ Leaf

No inductive hypothesis to use.
(Leaf doesn't contain any smaller components with type tree.)

Proof:
tm f (tm g Leaf)

Another example

Theorem:

For all trees t : a tree, tm $\mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

```
let rec tm ft=
    match t with
    | Leaf -> Leaf
    | Node (x, I, r) -> Node (f x, tm fl, tm f r)
let (<>) fg=
    fun x -> f(gx)
```

Case: $\mathrm{t}=$ Leaf

No inductive hypothesis to use.
(Leaf doesn't contain any smaller components with type tree.)

```
Proof:
    tm f (tm g Leaf)
== tm f Leaf (eval tm g Leaf)
== Leaf (eval tm f Leaf)
== tm (f <> g) Leaf (reverse eval)
```


Another example

Theorem:

For all trees t : a tree, $\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\mathrm{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

IH1: $\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{I})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{I}$
IH2: $\operatorname{tm} \mathrm{f}(\mathrm{tmgr})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{r}$
let rectmft= match t with
| Leaf -> Leaf
| Node (x, I, r) -> Node (f x, tm f I, tm fr)
let $(<>) f g=$ fun $x \rightarrow f(g x)$

Another example

Theorem:

For all trees t : a tree, $\operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\mathrm{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

IH1: $\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{I})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{I}$
IH2: $\operatorname{tm} \mathrm{f}(\mathrm{tmgr})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{r}$
Proof:
tm f(tm g (Node (v, I, r)))
$==\operatorname{tm}(\mathrm{f}<>\mathrm{g})(\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r}))$
let rectmft= match t with
| Leaf -> Leaf
| Node (x, I, r) -> Node (f x, tm f I, tm fr)
let $(<>) f g=$ fun $x \rightarrow f(g x)$

Another example

Theorem:

For all trees t : a tree, tm $\mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

$$
\begin{aligned}
& \mathrm{IH} 1: \operatorname{tm} \mathrm{f}(\operatorname{tm} \mathrm{gl})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{I} \\
& \mathrm{IH} 2: \operatorname{tm} \mathrm{f}(\operatorname{tm} \mathrm{r})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{r}
\end{aligned}
$$

Proof:
$\operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g}(\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})))$
$==\operatorname{tmf}(\operatorname{Node}(\mathrm{g} v, \mathrm{tm} \mathrm{gl}, \mathrm{tm} \mathrm{gr}))$
(eval inner tm)
let rectmft= match t with
| Leaf -> Leaf
| Node (x, I, r) -> Node (f x, tm f I, tm fr)

```
let (<>) fg=
    fun x -> f(g x)
```

Another example

Theorem:
For all trees t : a tree, $\operatorname{tm} \mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$
IH1: $\operatorname{tm} f(\operatorname{tmgl})==\operatorname{tm}(f<>g) I$
IH2: $\operatorname{tmf}(\operatorname{tmgr})==\operatorname{tm}(f<>g) r$

Proof:
$\operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g}(\operatorname{Node}(\mathrm{v}, \mathrm{l}, \mathrm{r})))$
$==\operatorname{tmf}($ Node $(\mathrm{gv}, \mathrm{tmgl}, \mathrm{tm} \mathrm{gr}))$

```
let rectmft=
match \(t\) with
| Leaf -> Leaf
| Node ( \(x\), I, r) -> Node (f x, tm fI, tm fr)
```

let $(<>) f g=$
fun $x \rightarrow f(g x)$

Another example

Theorem:

For all trees t : a tree, tm $\mathrm{f}(\mathrm{tmg} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

```
IH1: tm f (tm g I) == tm (f <> g) I
IH2: tm f(tm g r) == tm (f <> g) r
```


let rectmft=

 match t with| Leaf -> Leaf
| Node (x, I, r) -> Node (f x, tm f I, tm fr)

```
let (<>) fg=
    fun x -> f(gx)
```


Proof:

$\operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g}(\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})))$
$==\operatorname{tm} f($ Node $(\mathrm{g} \mathrm{v}, \mathrm{tm} \mathrm{gl}, \mathrm{tm} \mathrm{gr}))$
$==\operatorname{Node}(\mathrm{f}(\mathrm{g} v), \operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{I}), \operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{gr}))$
(eval inner tm)
(eval - since g, tm are total)

Node ((f <> g) v, tm (f <> g) I, tm (f <> g) r)
$==\operatorname{tm}(\mathrm{f}<>\mathrm{g})($ Node $(\mathrm{v}, \mathrm{l}, \mathrm{r}))$
(eval reverse)

Another example

Theorem:

For all trees t : a tree, $\mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

```
IH1: tm f (tm g I) == tm (f <> g) I
IH2: tm f (tm g r) == tm (f <> g) r
```


let rectmft=

 match t with| Leaf -> Leaf
| Node (x, I, r) -> Node (f x, tm f I, tm fr)

```
let (<>) fg=
    fun x -> f(gx)
```


Proof:

$\operatorname{tm} f(\operatorname{tm} \mathrm{~g}(\operatorname{Node}(\mathrm{v}, \mathrm{l}, \mathrm{r})))$
$==\operatorname{tm} f($ Node $(\mathrm{g} \mathrm{v}, \mathrm{tm} \mathrm{gl}, \mathrm{tm} \mathrm{gr}))$
$==\operatorname{Node}(\mathrm{f}(\mathrm{g} v), \operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{I}), \mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{gr}))$
(eval inner tm)
(eval - since g, tm are total)

$$
\begin{align*}
& \operatorname{Node}((\mathrm{f}<>\mathrm{g}) \mathrm{v}, \operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{I}, \operatorname{tm} \mathrm{f}(\operatorname{tm} \mathrm{~g} \mathrm{r})) \\
== & \operatorname{Node}((\mathrm{f}<>\mathrm{g}) \mathrm{v}, \operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{l}, \operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{r}) \tag{IH2}\\
= & \operatorname{tm}(\mathrm{f}<>\mathrm{g})(\operatorname{Node}(\mathrm{v}, \mathrm{l}, \mathrm{r}))
\end{align*}
$$

(eval reverse)

Another example

Theorem:

For all trees t : a tree, $\mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

IH1: $\operatorname{tm} \mathrm{f}(\mathrm{tmgl})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{I}$
IH2: $\operatorname{tm} \mathrm{f}(\mathrm{tmgr})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{r}$

Proof:

$\operatorname{tm} f(\operatorname{tm~g}(\operatorname{Node}(v, l, r)))$
$==\operatorname{tmf}($ Node $(g v, \operatorname{tmgl}, \operatorname{tm} g r))$
$==\operatorname{Node}(\mathrm{f}(\mathrm{g} v), \mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{gl}), \mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{gr}))$
$==\operatorname{Node}((\mathrm{f}<>\mathrm{g}) \mathrm{v}, \operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{gl}), \operatorname{tm} \mathrm{f}(\mathrm{tmgr}))$
$==\operatorname{Node}((f<>g) v, \operatorname{tm}(f<>g) I$, tm f(tm g r))
$==\operatorname{Node}((f<>g) v, \operatorname{tm}(f<>g) I$, tm (f <> g) r)
$==\operatorname{tm}(\mathrm{f}<>\mathrm{g})($ Node $(\mathrm{v}, \mathrm{l}, \mathrm{r}))$
let rectmft=
match t with
| Leaf -> Leaf
| Node (x, I, r) -> Node (fx, tm f I, tm fr)

```
let (<>) fg=
    fun x -> f(gx)
```


Another example

Theorem:

For all trees t : a tree, $\mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{t})=\mathrm{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{t}$

Case: $\mathrm{t}=\operatorname{Node}(\mathrm{v}, \mathrm{I}, \mathrm{r})$

IH1: $\operatorname{tm} \mathrm{f}(\mathrm{tmgl})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{I}$
IH2: $\operatorname{tm} \mathrm{f}(\mathrm{tmgr})==\operatorname{tm}(\mathrm{f}<>\mathrm{g}) \mathrm{r}$

Proof:

$\operatorname{tm} f(\operatorname{tmg} \operatorname{(Node}(v, l, r)))$
$==\operatorname{tm} f($ Node $(\mathrm{g} \mathrm{v}, \mathrm{tm} \mathrm{gl}, \mathrm{tm} \mathrm{gr}))$
$==\operatorname{Node}(\mathrm{f}(\mathrm{g} v), \mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{I}), \mathrm{tm} \mathrm{f}(\mathrm{tm} \mathrm{gr}))$
$==\operatorname{Node}((\mathrm{f}<>\mathrm{g}) \mathrm{v}, \operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{gl}), \operatorname{tm} \mathrm{f}(\mathrm{tm} \mathrm{g} \mathrm{r}))$
$==\operatorname{Node}((f<>g) v, \operatorname{tm}(f<>g) I, \operatorname{tm} f(t m g r))$
$==\operatorname{Node}((f<>g) v, \operatorname{tm}(f<>g) I$, tm (f <> g) r)
$==\operatorname{tm}(\mathrm{f}<>\mathrm{g})(\operatorname{Node}(\mathrm{v}, \mathrm{l}, \mathrm{r}))$
let rectmft= match t with
| Leaf -> Leaf
| Node (x, I, r) -> Node (fx, tm f I, tm fr)

```
let (<>) fg=
    fun x -> f(gx)
```


Summary: Proof Template for Trees

```
type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree
```

Theorem: For all x : 'a tree, property(x).

Proof: By induction on the structure of trees x.

Case: $x==$ Leaf:
... no use of inductive hypothesis (this is the smallest tree) ...

Case: $x==$ Node (v, left, right):

IH1: property(left) IH2: property(right)
... use IH1 and IH 2 in your proof ...

Summary of Template for Inductive Datatypes

```
typet= C1 of t1 | C2 of t2 | ... | Cn of tn
```

Theorem: For all $\mathrm{x}: \mathrm{t}$, $\operatorname{property}(\mathrm{x})$.
Proof: By induction on structure of values x with type t .
use patterns that divide up the cases

Take inspiration from the structure of the program

Case: $x==$ C1 v:
... use IH on components of v that have type $t \ldots$

Case: $x==C 2$ v:
... use IH on components of v that have type t...

Case: $x==C n v:$
... use IH on components of v that have type $t . .$.

Exercise

type 'a tree = Leaf of 'a| Node of 'a tree * 'a tree

let rec flip (t : 'a tree) =
match t with
| Leaf _-> t
| Node (a,b) -> Node (flip b, flip a)

> Theorem: for all t: ‘a tree, flip(flip t) = t.

Theorem: for all t: 'a tree, flip(flip (flip t)) = flip t .

