
Did I Get it Right?
Part 4:  Induction for Datatypes

http://~cos326/notes/reasoning-data.php

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes



Equational Reasoning: Some Key Ideas

What is the fundamental definition of expression equality (e1 == e2)?
• two expressions are equal if:

– they evaluate to equal values, or
– they both raise the same exception
– they both fail to terminate

• note:  we won’t ask you to do proofs about expressions that don't 
terminate, use I/O or mutable data structures

What are some consequences of this definition?
• expression equality is reflexive, symmetric and transitive
• if e1 --> e2 then e1 == e2
• if e1 == e2 then e[e1/x] == e[e2/x]. (substitution of equals for equals)

How do we prove things about recursive functions?
• we use proofs by induction
• to reason about recursive calls on smaller data, we assume the property 

we are trying to prove (ie, we use the induction hypothesis) 2



More General Template for Inductive Datatypes

type t =  C1 of t1 | C2 of t2 | ... | Cn of tn

types t1, t2 ... tn, may contain 1 or more occurrences of
t within them.

Examples:

type mylist =
MyNil

| MyCons of int * mylist

type ‘a tree =
Leaf

| Node of ‘a * ‘a tree * ‘a tree

recursive occurrences



More General Template for Inductive Datatypes

Theorem:  For all x : t, property(x).

type t =  C1 of t1 | C2 of t2 | ... | Cn of tn

Proof:  By induction on structure of values x with type t.



More General Template for Inductive Datatypes

Theorem:  For all x : t, property(x).

Case:  x == C2 v: 

... use IH on components of v that have type t ...

type t =  C1 of t1 | C2 of t2 | ... | Cn of tn

Proof:  By induction on structure of values x with type t.

Case:  x == C1 v:

... use IH on components of v that have type t ...

Case:  x == Cn v: 

... use IH on components of v that have type t ...



A PROOF ABOUT TREES



Another example

type ‘a tree = Leaf | Node of ‘a * ‘a tree * ‘a tree

let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 



Another example

Theorem:  
For all (total) functions f : b -> c,
For all (total) functions g : a -> b, 
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t

type ‘a tree = Leaf | Node of ‘a * ‘a tree * ‘a tree

let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 



“Forall intro”
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

To begin, let’s pick an arbitrary total function f and total function g.
We’ll prove the theorem without assuming any particular properties of f or g
(other than the fact that the types match up).  So, for the f and g we picked, 
we’ll prove:

Theorem:  
For all (total) functions f : b -> c,
For all (total) functions g : a -> b, 
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t

Theorem:  
For all trees t : a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Leaf

No inductive hypothesis to use. 
(Leaf doesn’t contain any smaller components with type tree.)

Proof:
tm f (tm g Leaf) 

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Leaf

No inductive hypothesis to use. 
(Leaf doesn’t contain any smaller components with type tree.)

Proof:
tm f (tm g Leaf) 

== tm f Leaf (eval tm g Leaf)
== Leaf                            (eval tm f Leaf)
== tm (f <> g) Leaf        (reverse eval)

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm (f <> g) (Node (v, l, r))

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm f (Node (g v, tm g l, tm g r)) (eval inner tm)

== tm (f <> g) (Node (v, l, r))

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm f (Node (g v, tm g l, tm g r)) (eval inner tm)

Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r)
== tm (f <> g) (Node (v, l, r)) (eval reverse)

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm f (Node (g v, tm g l, tm g r)) (eval inner tm)
== Node (f (g v), tm f (tm g l), tm f (tm g r)) (eval – since g, tm are total)

Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r)
== tm (f <> g) (Node (v, l, r)) (eval reverse)

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm f (Node (g v, tm g l, tm g r)) (eval inner tm)
== Node (f (g v), tm f (tm g l), tm f (tm g r)) (eval – since g, tm are total)

Node ((f <> g) v, tm (f <> g) l, tm f (tm g r))
== Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r) (IH2)
== tm (f <> g) (Node (v, l, r)) (eval reverse)

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm f (Node (g v, tm g l, tm g r)) (eval inner tm)
== Node (f (g v), tm f (tm g l), tm f (tm g r)) (eval – since g, tm are total)
== Node ((f <> g) v, tm f (tm g l), tm f (tm g r))
== Node ((f <> g) v, tm (f <> g) l, tm f (tm g r)) (IH1)
== Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r) (IH2)
== tm (f <> g) (Node (v, l, r)) (eval reverse)

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Another example
let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g = 
fun x -> f (g x) 

Case:  t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

Proof:
tm f (tm g (Node (v, l, r))) 

== tm f (Node (g v, tm g l, tm g r)) (eval inner tm)
== Node (f (g v), tm f (tm g l), tm f (tm g r)) (eval – since g, tm are total)
== Node ((f <> g) v, tm f (tm g l), tm f (tm g r)) (eval reverse)
== Node ((f <> g) v, tm (f <> g) l, tm f (tm g r)) (IH1)
== Node ((f <> g) v, tm (f <> g) l, tm (f <> g) r) (IH2)
== tm (f <> g) (Node (v, l, r)) (eval reverse)

Theorem:  
For all trees t :  a tree,
tm f (tm g t) == tm (f <> g) t



Summary:  Proof Template for Trees

Theorem:  For all x : ‘a tree, property(x).

type ‘a tree =  Leaf | Node of ‘a * ‘a tree * ‘a tree 

Proof:  By induction on the structure of trees x.

Case:  x == Leaf:

... no use of inductive hypothesis (this is the smallest 
tree) ...

Case:  x == Node (v, left, right): 

IH1:  property(left)
IH2:  property(right)   

... use IH1 and IH 2 in your proof ...



Summary of Template for Inductive Datatypes

Theorem:  For all x : t, property(x).

Case:  x == C2 v: 

... use IH on components of v that have type t ...

type t =  C1 of t1 | C2 of t2 | ... | Cn of tn

Proof:  By induction on structure of values x with type t.

Case:  x == C1 v:

... use IH on components of v that have type t ...

Case:  x == Cn v: 

... use IH on components of v that have type t ...

use patterns
that divide
up the cases

Take inspiration
from the
structure of the
program



Exercise

type ‘a tree =  Leaf of ‘a| Node of ‘a tree * ‘a tree

let rec flip (t: ‘a tree) = 
match t with
| Leaf _ -> t
| Node (a,b) -> Node (flip b, flip a)

Theorem:  for all t: ‘a tree, flip(flip t) = t.

Theorem:  for all t: ‘a tree, flip(flip (flip t)) = flip t.


