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Last Time --> This Time
Last time, we saw some proofs can be done by:

– eval definitions (ie: using forwards evaluation)
– using lemmas or facts we already know (eg: math)
– folding definitions back up (ie: using reverse evaluation)

But you might have noticed that none of the proofs we did last 
involved reasoning about recursive functions...

When you have a mix of recursive functions and symbolic values, 
you usually need more sophisticated proof techniques.
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A problem 3

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 4

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 5

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n = 0:
exp 0

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 6

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n = 0:
exp 0

== match 0 with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 7

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n = 0:
exp 0

== match 0 with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 1  (by evaluating match)
== 2^0 (by math)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 8

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 9

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 10

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating match)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 11

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating match)
== 2 * (match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)) (by eval exp)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 12

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating match)
== 2 * (match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)) (by eval exp)
== 2 * (2 * exp ((k+1) - 1 - 1)) (by assuming (!) k > 0,  eval)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



A problem 13

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating match)
== 2 * (match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)) (by eval exp)
== 2 * 2 * exp ((k+1) - 1 - 1) (by assuming (!) k > 0,  eval)
== 2 * 2 *  2 * exp ((k+1) - 1 - 1 - 1)) (by assuming (!) k > 1,  eval)
== 2 * 2 * 2 * 2 * exp ((k+1) - 1 - 1 - 1 - 1)) (by assuming (!) k > 2,  eval)
== 2 * 2 * 2 * 2 * 2 * ... ... (by assuming (!) k > ... )
== ... we aren’t making progress ... just unrolling the loop forever ...

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



Induction
When proving theorems about recursive functions, we usually 
need to use induction.

– In inductive proofs, in a case for object X, we assume that the 
theorem holds for all objects smaller than X
• this assumption is called the inductive hypothesis (IH for short)

– Eg:  When proving a theorem about natural numbers by 
induction, and considering the case for natural number k+1, we 
get to assume our theorem is true for natural number k 
(because k is smaller than k+1)

– Eg:  When proving a theorem about lists by induction, and 
considering the case for a list x::xs, we get to assume our 
theorem is true for the list xs (which is a shorter list than x::xs)
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Back to the Proof 15

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating case)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



Back to the Proof 16

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating case)
== 2 * exp (k) (by math)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



Back to the Proof 17

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating case)
== 2 * exp (k) (by math)
== 2 * 2^k (by IH!)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



Back to the Proof 18

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
exp (k+1)

== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1) (by evaluating case)
== 2 * exp (k) (by math)
== 2 * 2^k (by IH!)
== 2^(k+1) (by math)
QED!

Proof:  

Recall:  Every natural number n is
either 0 or it is k+2 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
match n with

| 0 -> 1
| n -> 2 * exp (n-1)



Another example

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.

Case:  n == 0:
...

Case:  n == k+1:
...

Theorem:  For all natural numbers n, 
even(2*n) == true.
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Another example

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

Case:  n == 0:
even (2*0)

==

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

Case:  n == 0:
even (2*0)

== even (0) (by math)
== 

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

Case:  n == 0:
even (2*0)

== even (0) (by math)
== match 0 of (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)
== true (by evaluation)

Theorem:  For all natural numbers n, 
even(2*n) == true.

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Case:  n == k+1:
even (2*(k+1))

==

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Case:  n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)
==

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)

24



Another example

Case:  n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)
== match 2*k+2 with (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Case:  n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)
== match 2*k+2 with (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)
== even ((2*k+2)-2) (by evaluation)

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Case:  n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)
== match 2*k+2 with (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)
== even ((2*k+2)-2) (by evaluation)
== even (2*k) (by math)

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Another example

Case:  n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)
== match 2*k+2 with (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)
== even ((2*k+2)-2) (by evaluation)
== even (2*k) (by math)
== true (by IH)
QED.

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
match n with

| 0 -> true
| 1 -> false
| n -> even (n-2)
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Template for Inductive Proofs on Natural Numbers

Proof:  By induction on natural numbers n.

Case:  n == 0:
...

Case:  n == k+1:
...

Theorem:  For all natural numbers n, property of n.

justifications to use:
• simple math
• eval, reverse eval, "by def"
• IH

proof methodology.
write this down.

cases must
cover all 
natural
numbers
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Template for Inductive Proofs on Natural Numbers

Proof:  By induction on natural numbers n.

Case:  n == 0:
...

Case:  n == k+1:
...

Theorem:  For all natural numbers n, property of n.

cases must
cover all 
natural
numbers

Note there are other ways to cover all natural numbers:
• eg:  case for 0, case for 1, case for k+2
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Exercise 31

Prove that add implements addition!

Theorem:  For all natural numbers n, m, 
add n m = n + m

let rec add n m =
match n with

| 0 -> m
| n -> add (n-1) (m+1)

Note:  
There are 2 parameters to this theorem – n and m.  
You could do your proof by (a) "induction on n" or (b) "by induction on m" 

If you choose (a) then you will consider the cases:
• n = 0 and m is an arbitrary number
• n = k+1 and m is an arbitrary number
You can use your inductive hypothesis whenever add is called and the first parameter of the function (n) is smaller.

If you choose (b) then you will consider the cases:
• m = 0 and n is an arbitrary number
• m = k+1 and n is an arbitrary number
You can use your inductive hypothesis whenever add is called and the second parameter of the function (m) is smaller.

Which should you choose?  Why?


